Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orit Gutman is active.

Publication


Featured researches published by Orit Gutman.


Journal of Cell Biology | 2002

Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells

Hagit Niv; Orit Gutman; Yoav I. Henis

Ras–membrane interactions play important roles in signaling and oncogenesis. H-Ras and K-Ras have nonidentical membrane anchoring moieties that can direct them to different membrane compartments. Ras–lipid raft interactions were reported, but recent studies suggest that activated K-Ras and H-Ras are not raft resident. However, specific interactions of activated Ras proteins with nonraft sites, which may underlie functional differences and phenotypic variation between different Ras isoforms, are unexplored. Here we used lateral mobility studies by FRAP to investigate the membrane interactions of green fluorescent protein–tagged H- and K-Ras in live cells. All Ras isoforms displayed stable membrane association, moving by lateral diffusion and not by exchange with a cytoplasmic pool. The lateral diffusion rates of constitutively active K- and H-Ras increased with their expression levels in a saturable manner, suggesting dynamic association with saturable sites or domains. These sites are distinct from lipid rafts, as the activated Ras mutants are not raft resident. Moreover, they appear to be different for H- and K-Ras. However, wild-type H-Ras, the only isoform preferentially localized in rafts, displayed cholesterol-sensitive interactions with rafts that were independent of its expression level. Our findings provide a mechanism for selective signaling by different Ras isoforms.


Journal of Biological Chemistry | 1999

Membrane Interactions of a Constitutively Active GFP-Ki-Ras 4B and Their Role in Signaling EVIDENCE FROM LATERAL MOBILITY STUDIES

Hagit Niv; Orit Gutman; Yoav I. Henis

Membrane anchorage of Ras proteins in the inner leaflet of the plasma membrane is an important factor in their signaling and oncogenic potential. Despite these important roles, the precise mode of Ras-membrane interactions is not yet understood. It is especially important to characterize these interactions at the surface of intact cells. To investigate Ras-membrane interactions in live cells, we employed studies on the lateral mobility of a constitutively active Ras isoform to characterize its membrane dynamics, and examined the effects of the Ras-displacing antagonistS-trans,trans-farnesylthiosalicylic acid (FTS) (Haklai, R., Gana-Weisz, M., Elad, G., Paz, A., Marciano, D., Egozi, Y., Ben-Baruch, G., and Kloog, Y. (1998) Biochemistry 37, 1306–1314) on these parameters. A green fluorescent protein (GFP) was fused to the N terminus of constitutively active Ki-Ras 4B(12V) to generate GFP-Ki-Ras(12V). When stably expressed in Rat-1 cells, this protein was preferentially localized to the plasma membrane and displayed transforming activity. The lateral mobility studies demonstrated that GFP-Ki-Ras(12V) undergoes fast lateral diffusion at the plasma membrane, rather than exchange between membrane-bound and unbound states. Treatment of the cells with FTS had a biphasic effect on GFP-Ki-Ras(12V) lateral mobility. At the initial phase, the lateral diffusion rate of GFP-Ki-Ras(12V) was elevated, suggesting that it is released from some constraints on its lateral mobility. This was followed by dislodgment of the protein into the cytoplasm, and a reduction in the diffusion rate of the fraction of GFP-Ki-Ras(12V) that remained associated with the plasma membrane. Control experiments with other S-prenyl analogs showed that these effects are specific for FTS. These results have implications for the interactions of Ki-Ras with specific membrane anchorage domains or sites.


Current Biology | 2010

An S-Acylation Switch of Conserved G Domain Cysteines Is Required for Polarity Signaling by ROP GTPases

Nadav Sorek; Oshik Segev; Orit Gutman; Einat Bar; Sandra Richter; Limor Poraty; Joel A. Hirsch; Yoav I. Henis; Efraim Lewinsohn; Gerd Jürgens; Shaul Yalovsky

Summary Rho GTPases are master regulators of cell polarity [1]. For their function, Rhos must associate with discrete plasma membrane domains [2]. Rho of Plants (ROPs) or RACs comprise a single family [3–5]. Prenylation and S -acylation of hypervariable domain cysteines of Ras and Rho GTPases are required for their function [6–11]; however, lipid modifications in the G domain have never been reported. Reversible S -acylation involves the attachment of palmitate (C16:0) or other saturated lipids to cysteines through a thioester linkage and was implicated in the regulation of signaling [12]. Here we show that transient S -acylation of Arabidopsis AtROP6 takes place on two conserved G domain cysteine residues, C21 and C156. C21 is relatively exposed and is accessible for modification, but C156 is not, implying that its S -acylation involves a conformational change. Fluorescence recovery after photobleaching beam-size analysis [13] shows that S -acylation of AtROP6 regulates its membrane-association dynamics, and detergent-solubilization studies indicate that it regulates AtROP6 association with lipid rafts. Site-specific acylation-deficient AtROP6 mutants can bind and hydrolyze GTP but display compromised effects on polar cell growth, endocytic uptake of the tracer dye FM4-64, and distribution of reactive oxygen species. These data reveal an S -acylation switch that regulates Rho signaling.Rho GTPases are master regulators of cell polarity. For their function, Rhos must associate with discrete plasma membrane domains. Rho of Plants (ROPs) or RACs comprise a single family. Prenylation and S-acylation of hypervariable domain cysteines of Ras and Rho GTPases are required for their function; however, lipid modifications in the G domain have never been reported. Reversible S-acylation involves the attachment of palmitate (C16:0) or other saturated lipids to cysteines through a thioester linkage and was implicated in the regulation of signaling. Here we show that transient S-acylation of Arabidopsis AtROP6 takes place on two conserved G domain cysteine residues, C21 and C156. C21 is relatively exposed and is accessible for modification, but C156 is not, implying that its S-acylation involves a conformational change. Fluorescence recovery after photobleaching beam-size analysis shows that S-acylation of AtROP6 regulates its membrane-association dynamics, and detergent-solubilization studies indicate that it regulates AtROP6 association with lipid rafts. Site-specific acylation-deficient AtROP6 mutants can bind and hydrolyze GTP but display compromised effects on polar cell growth, endocytic uptake of the tracer dye FM4-64, and distribution of reactive oxygen species. These data reveal an S-acylation switch that regulates Rho signaling.


Traffic | 2006

Cyclodextrins but not Compactin Inhibit the Lateral Diffusion of Membrane Proteins Independent of Cholesterol

Dmitry Shvartsman; Orit Gutman; A. Tietz; Yoav I. Henis

Cholesterol and glycosphingolipid‐enriched membrane domains, termed lipid rafts, were proposed to play important roles in trafficking and signaling events. These functions are inhibited following putative disruption of rafts by cholesterol depletion, commonly induced by treatment with methyl‐β‐cyclodextrin (MβCD). However, several studies showed that the lateral diffusion of membrane proteins is inhibited by MβCD, suggesting that it may have additional effects on membrane organization unrelated to cholesterol removal. Here, we investigated this possibility by comparison of the effects of cholesterol depletion by MβCD and by metabolic inhibition (compactin), and of treatment with α‐CD, which does not bind cholesterol. The studies employed two series of proteins (Ras and influenza hemagglutinin), each containing as internal controls related mutants that differ in raft association. Mild MβCD treatment retarded the lateral diffusion of both raft and non‐raft mutants, whereas similar cholesterol reduction (30–33%) by metabolic inhibition enhanced selectively the diffusion of the raft‐associated mutants. Moreover, α‐CD also inhibited the diffusion of raft and non‐raft mutants, despite its lack of effect on cholesterol content. These findings suggest that the widely used treatment with CD to reduce cholesterol has additional, cholesterol‐independent effects on membrane protein mobility, which do not necessarily distinguish between raft and non‐raft proteins.


Plant Physiology | 2011

Differential Effects of Prenylation and S-Acylation on Type I and II ROPS Membrane Interaction and Function

Nadav Sorek; Orit Gutman; Einat Bar; Mohamad Abu-Abied; Xuehui Feng; Mark P. Running; Efraim Lewinsohn; Naomi Ori; Einat Sadot; Yoav I. Henis; Shaul Yalovsky

Prenylation primarily by geranylgeranylation is required for membrane attachment and function of type I Rho of Plants (ROPs) and Gγ proteins, while type II ROPs are attached to the plasma membrane by S-acylation. Yet, it is not known how prenylation affects ROP membrane interaction dynamics and what are the functional redundancy and specificity of type I and type II ROPs. Here, we have used the expression of ROPs in mammalian cells together with geranylgeranylation and CaaX prenylation-deficient mutants to answer these questions. Our results show that the mechanism of type II ROP S-acylation and membrane attachment is unique to plants and likely responsible for the viability of plants in the absence of CaaX prenylation activity. The prenylation of ROPs determines their steady-state distribution between the plasma membrane and the cytosol but has little effect on membrane interaction dynamics. In addition, the prenyl group type has only minor effects on ROP function. Phenotypic analysis of the CaaX prenylation-deficient pluripetala mutant epidermal cells revealed that type I ROPs affect cell structure primarily on the adaxial side, while type II ROPs are functional and induce a novel cell division phenotype in this genetic background. Taken together, our studies show how prenyl and S-acyl lipid modifications affect ROP subcellular distribution, membrane interaction dynamics, and function.


The Journal of Neuroscience | 2008

DOC2B Acts as a Calcium Switch and Enhances Vesicle Fusion

Reut Friedrich; Alexander J. A. Groffen; Emma Connell; Jan R.T. van Weering; Orit Gutman; Yoav I. Henis; Bazbek Davletov; Uri Ashery

Calcium-dependent exocytosis is regulated by a vast number of proteins. DOC2B is a synaptic protein that translocates to the plasma membrane (PM) after small elevations in intracellular calcium concentration. The aim of this study was to investigate the role of DOC2B in calcium-triggered exocytosis. Using biochemical and biophysical measurements, we demonstrate that the C2A domain of DOC2B interacts directly with the PM in a calcium-dependent manner. Using a combination of electrophysiological, morphological, and total internal reflection fluorescent measurements, we found that DOC2B acts as a priming factor and increases the number of fusion-competent vesicles. Comparing secretion during repeated stimulation between wild-type DOC2B and a mutated DOC2B that is constantly at the PM showed that DOC2B enhances catecholamine secretion also during repeated stimulation and that DOC2B has to translocate to the PM to exert its facilitating effect, suggesting that its activity is dependent on calcium. The hypothesis that DOC2B exerts its effect at the PM was supported by the finding that DOC2B affects the fusion kinetics of single vesicles and interacts with the PM SNAREs (soluble NSF attachment receptors). We conclude that DOC2B is a calcium-dependent priming factor and its activity at the PM enables efficient expansion of the fusion pore, leading to increased catecholamine release.


Journal of Cell Biology | 2007

Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets

Dmitry Shvartsman; John C. Donaldson; Begoña Díaz; Orit Gutman; G. Steven Martin; Yoav I. Henis

Src functions depend on its association with the plasma membrane and with specific membrane-associated assemblies. Many aspects of these interactions are unclear. We investigated the functions of kinase, SH2, and SH3 domains in Src membrane interactions. We used FRAP beam-size analysis in live cells expressing a series of c-Src–GFP proteins with targeted mutations in specific domains together with biochemical experiments to determine whether the mutants can generate and bind to phosphotyrosyl proteins. Wild-type Src displays lipid-like membrane association, whereas constitutively active Src-Y527F interacts transiently with slower-diffusing membrane-associated proteins. These interactions require Src kinase activity and SH2 binding, but not SH3 binding. Furthermore, overexpression of paxillin, an Src substrate with a high cytoplasmic population, competes with membrane phosphotyrosyl protein targets for binding to activated Src. Our observations indicate that the interactions of Src with lipid and protein targets are dynamic and that the kinase and SH2 domain cooperate in the membrane targeting of Src.


FEBS Letters | 2012

Oligomeric interactions of TGF-β and BMP receptors.

Marcelo Ehrlich; Orit Gutman; Petra Knaus; Yoav I. Henis

Transforming growth factor‐β (TGF‐β) and bone morphogenetic protein (BMP) cytokines participate in a multiplicity of ways in the regulation of numerous physiological and pathological processes. Their wide‐ranging biological functions are controlled by several mechanisms, including regulation of transcription, complex formation among the signaling receptors (oligomerization) and with co‐receptors, binding of the receptors to scaffolding proteins or their targeting to specific membrane domains. Here, we address the generation of TGF‐β and BMP receptor homo‐ and hetero‐oligomers and its roles as a mechanism capable of fast regulation of signaling by these crucial cytokines. We examine the available biochemical, biophysical and structural evidence for the ternary structure of these complexes, and the possible roles of homomeric and heteromeric receptor oligomers in signaling.


Biochimica et Biophysica Acta | 1983

Lateral diffusion and patch formation of H-2Kk antigens on mouse spleen lymphocytes

Yoav I. Henis; Orit Gutman

We have studied the diffusion and aggregation of H-2Kk antigens labeled with a fluorescent anti-H-2Kk monoclonal antibody (IgG) on mouse splenic lymphocytes, employing fluorescence photobleaching recovery and fluorescence microscopy. The H-2Kk antigens were initially distributed homogeneously on all lymphocytes. Upon antibody binding, sub-micron patches were formed on 50-60% of the cells. A lateral diffusion coefficient, D, of 7.1 X 10(-10) cm2/s and a mobile fraction of 0.73 were found for H-2Kk antigens on diffusely-labeled cells, while these antigens were immobile (D less than or equal to 5 X 10(-12) cm2/s) on patched cells. The patched and nonpatched sub-populations did not correspond to B- and T-lymphocytes. Subjection to low temperature or treatment with NaN3 or cytoskeleton-disrupting drugs did not affect the diffusion or patching of H-2Kk, indicating no involvement of metabolic energy or drug-sensitive cytoskeletal components. These findings could be related to the interactions of H-2 antigens on the cell surface, and to the different susceptibilities of various cells to lysis by cytotoxic T-cells.


Journal of Biological Chemistry | 2010

Differential regulation of phospholipase C-β2 activity and membrane interaction by Gαq, Gβ1γ2, and Rac2

Orit Gutman; Claudia Walliser; Thomas Piechulek; Peter Gierschik; Yoav I. Henis

We combined fluorescence recovery after photobleaching (FRAP) beam-size analysis with biochemical assays to investigate the mechanisms of membrane recruitment and activation of phospholipase C-β2 (PLCβ2) by G protein αq and βγ dimers. We show that activation by αq and βγ differ from activation by Rac2 and from each other. Stimulation by αq enhanced the plasma membrane association of PLCβ2, but not of PLCβ2Δ, which lacks the αq-interacting region. Although αq resembled Rac2 in increasing the contribution of exchange to the FRAP of PLCβ2 and in enhancing its membrane association, the latter effect was weaker than with Rac2. Moreover, the membrane recruitment of PLCβ2 by αq occurred by enhancing PLCβ2 association with fast-diffusing (lipid-like) membrane components, whereas stimulation by Rac2 led to interactions with slow diffusing membrane sites. On the other hand, activation by βγ shifted the FRAP of PLCβ2 and PLCβ2Δ to pure lateral diffusion 3- to 5-fold faster than lipids, suggesting surfing-like diffusion along the membrane. We propose that these different modes of PLCβ2 membrane recruitment may accommodate contrasting functional needs to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdInsP2) in localized versus dispersed populations. PLCβ2 activation by Rac2, which leads to slow lateral diffusion and much faster exchange, recruits PLCβ2 to act locally on PtdInsP2 at specific domains. Activation by αq leads to lipid-like diffusion of PLCβ2 accompanied by exchange, enabling the sampling of larger, yet limited, areas prior to dissociation. Finally, activation by βγ recruits PLCβ2 to the membrane by transient interactions, leading to fast “surfing” diffusion along the membrane, sampling large regions for dispersed PtdInsP2 populations.

Collaboration


Dive into the Orit Gutman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge