Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orlando B. Martins is active.

Publication


Featured researches published by Orlando B. Martins.


BMC Genomics | 2009

Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5

Marcelo Bertalan; Rodolpho M. Albano; Vânia de Pádua; Luc Felicianus Marie Rouws; Cristian Rojas; Adriana Silva Hemerly; Kátia Regina dos Santos Teixeira; Stefan Schwab; Jean Araujo; André Oliveira; Leonardo França; Viviane Magalhães; Sylvia Maria Campbell Alquéres; Wellington Almeida; Marcio Martins Loureiro; Eduardo de Matos Nogueira; Daniela Cidade; Denise da Costa Oliveira; Tatiana de Almeida Simão; Jacyara Maria Brito Macedo; Ana Valadão; Marcela Dreschsel; Flávia Alvim Dutra de Freitas; Marcia Soares Vidal; Helma Ventura Guedes; Elisete Pains Rodrigues; Carlos Henrique Salvino Gadelha Meneses; Paulo Sergio Torres Brioso; Luciana Pozzer; Daniel Figueiredo

BackgroundGluconacetobacter diazotrophicus Pal5 is an endophytic diazotrophic bacterium that lives in association with sugarcane plants. It has important biotechnological features such as nitrogen fixation, plant growth promotion, sugar metabolism pathways, secretion of organic acids, synthesis of auxin and the occurrence of bacteriocins.ResultsGluconacetobacter diazotrophicus Pal5 is the third diazotrophic endophytic bacterium to be completely sequenced. Its genome is composed of a 3.9 Mb chromosome and 2 plasmids of 16.6 and 38.8 kb, respectively. We annotated 3,938 coding sequences which reveal several characteristics related to the endophytic lifestyle such as nitrogen fixation, plant growth promotion, sugar metabolism, transport systems, synthesis of auxin and the occurrence of bacteriocins. Genomic analysis identified a core component of 894 genes shared with phylogenetically related bacteria. Gene clusters for gum-like polysaccharide biosynthesis, tad pilus, quorum sensing, for modulation of plant growth by indole acetic acid and mechanisms involved in tolerance to acidic conditions were identified and may be related to the sugarcane endophytic and plant-growth promoting traits of G. diazotrophicus. An accessory component of at least 851 genes distributed in genome islands was identified, and was most likely acquired by horizontal gene transfer. This portion of the genome has likely contributed to adaptation to the plant habitat.ConclusionThe genome data offer an important resource of information that can be used to manipulate plant/bacterium interactions with the aim of improving sugarcane crop production and other biotechnological applications.


Applied and Environmental Microbiology | 2003

Optimized Expression of a Thermostable Xylanase from Thermomyces lanuginosus in Pichia pastoris

Mônica Caramez Triches Damaso; Marcius S. Almeida; Eleonora Kurtenbach; Orlando B. Martins; Nei Pereira; Carolina M. M. C. Andrade; Rodolpho M. Albano

ABSTRACT Highly efficient production of a Thermomyces lanuginosus IOC-4145 β-1,4-xylanase was achieved in Pichia pastoris under the control of the AOX1 promoter. P. pastoris colonies expressing recombinant xylanase were selected by enzymatic activity plate assay, and their ability to secrete high levels of the enzyme was evaluated in small-scale cultures. Furthermore, an optimization of enzyme production was carried out with a 23 factorial design. The influence of initial cell density, methanol, and yeast nitrogen base concentration was evaluated, and initial cell density was found to be the most important parameter. A time course profile of recombinant xylanase production in 1-liter flasks with the optimized conditions was performed and 148 mg of xylanase per liter was achieved. Native and recombinant xylanases were purified by gel filtration and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism spectroscopy, matrix-assisted laser desorption ionization-time of flight-mass spectrometry and physicochemical behavior. Three recombinant protein species of 21.9, 22.1, and 22.3 kDa were detected in the mass spectrum due to variability in the amino terminus. The optimum temperature, thermostability, and circular dichroic spectra of the recombinant and native xylanases were identical. For both enzymes, the optimum temperature was 75°C, and they retained 60% of their original activity after 80 min at 70°C or 40 min at 80°C. The high level of fully active recombinant xylanase obtained in P. pastoris makes this expression system attractive for fermentor growth and industrial applications.


PLOS ONE | 2010

Environmental Shaping of Sponge Associated Archaeal Communities

Aline S. Turque; Daniela Batista; Cynthia B. Silveira; Ricardo P. Vieira; Fernando C. Moraes; Maysa M. Clementino; Rodolpho M. Albano; Rodolfo Paranhos; Orlando B. Martins; Guilherme Muricy

Background Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood. Methodology/Principal Findings We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA) gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA) generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum. Conclusion/Significance The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition of their associated archaeal communities, thereby improving their fitness in impacted environments.


Microbial Ecology | 2007

Archaeal communities in a tropical estuarine ecosystem: Guanabara Bay, Brazil.

Ricardo P. Vieira; Maysa M. Clementino; Denise Neves de Oliveira; Rodolpho M. Albano; Alessandra M. Gonzalez; Rodolfo Paranhos; Orlando B. Martins

Guanabara Bay is an eutrophic estuarine system located in a humid tropical region surrounded by the second largest metropolitan area of Brazil. This study explores the contrasting environmental chemistry and microbiological parameters that influence the archaeaplankton diversity in a pollution gradient in Guanabara Bay ecosystem. The environments sampled ranged from completely anoxic waters in a polluted inner channel to the adjacent, relatively pristine, coastal Atlantic Ocean. Partial archaeal 16S rDNA sequences in water samples were retrieved by polymerase chain reaction (PCR) and analyzed using denaturing gradient gel electrophoresis (DGGE), cloning, and sequencing. Sequences were subjected to phylogenetic and diversity analyses. Community structure of the free-living archaeal assemblages was different from that of the particle-attached archaea according to DGGE. Gene libraries revealed that phylotype identification was consistent with environmental setting. Archaeal phylotypes found in polluted anoxic waters and in more pristine waters were closely related to organisms that have previously been found in these environments. However, inner bay archaea were related to organisms found in oil, industrial wastes, and sewage, implying that water pollution controls archaea communities in this system. The detection of a substantial number of uncultured phylotypes suggests that Guanabara Bay harbors a pool of novel archaeaplankton taxa.


Applied Microbiology and Biotechnology | 2006

Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization

Silvia Cristina Cunha dos Santos; Daniela Sales Alviano; Celuta Sales Alviano; Marcelo de Pádula; Alvaro C. Leitão; Orlando B. Martins; Claudia Maria Soares Ribeiro; Monica Y. M. Sassaki; Carla P. S. Matta; Juliana Vaz Bevilaqua; Gina V. Sebastián; Lucy Seldin

A dibenzothiophene (DBT)-degrading bacterial strain able to utilize carbazole as the only source of nitrogen was identified as Gordonia sp. F.5.25.8 due to its 16S rRNA gene sequence and phenotypic characteristics. Gas chromatography (GC) and GC–mass spectroscopy analyses showed that strain F.5.25.8 transformed DBT into 2-hydroxybiphenyl (2-HBP). This strain was also able to grow using various organic sulfur or nitrogen compounds as the sole sulfur or nitrogen sources. Resting-cell studies indicated that desulfurization occurs either in cell-associated or in cell-free extracts of F.5.25.8. The biological responses of F.5.25.8 to a series of mutagens and environmental agents were also characterized. The results revealed that this strain is highly tolerant to DNA damage and also refractory to induced mutagenesis. Strain F.5.25.8 was also characterized genetically. Results showed that genes involved in desulfurization (dsz) are located in the chromosome, and PCR amplification was observed with primers dszA and dszB designed based on Rhodococcus genes. However, no amplification product was observed with the primer based on dszC.


Journal of Applied Microbiology | 2007

Archaeal diversity in naturally occurring and impacted environments from a tropical region

Maysa M. Clementino; C.C. Fernandes; Ricardo P. Vieira; C.R. Polycarpo; Orlando B. Martins

Aims:  To evaluate archaeal diversity in natural and impacted habitats from Rio de Janeiro state, Brazil, a tropical region of South America.


Journal of Clinical Microbiology | 2001

PCR analyses of tRNA intergenic spacer, 16S-23S internal transcribed spacer, and randomly amplified polymorphic DNA reveal inter- and intraspecific relationships of Enterobacter cloacae strains.

Maysa M. Clementino; Ivano de Filippis; Carlos Roberto Sobrinho do Nascimento; Regina Branquinho; Carmem L. Rocha; Orlando B. Martins

ABSTRACT PCR analysis of tRNA intergenic spacer (tDNA-PCR) and of the 16S-23S internal transcribed spacer (ITS-PCR) and random amplified polymorphic DNA (RAPD) analysis were evaluated for their usefulness in characterization of Enterobacter cloacae strains isolated from both clinical origins and vaccine microbial contamination. tDNA-PCR presented specific and reproducible patterns for Enterobacter sakazakii ATCC 29004,Enterobacter aerogenes ATCC 13048, andEnterobacter cloacae ATCC 13047 and 23355 that presented the same profile for all 16 E. cloacae isolates, offering an alternative tool for species-level identification. ITS-PCR and RAPD analysis yielded completely different banding patterns for the 20 strains studied, except for E. cloacae strains isolated from different batches of vaccine that exhibited a unique pattern, suggesting contamination by the same strain. The combined use of tDNA-PCR and ITS-PCR in a one-step protocol allows accurate identification and typing of E. cloacae strains a few hours after the colony has been isolated.


Extremophiles | 2008

Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world

Maysa M. Clementino; Ricardo P. Vieira; A. P. A. Nascimento; Cynthia B. Silveira; T. C. Riva; Alessandra M. Gonzalez; Rodolfo Paranhos; Rodolpho M. Albano; Antonio Ventosa; Orlando B. Martins

Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.


PLOS ONE | 2012

Gut Bacterial Communities in the Giant Land Snail Achatina fulica and Their Modification by Sugarcane-Based Diet

Janaína J. V. Cavalcante; Ricardo P. Vieira; Joyce L. Lima; Maria Angela B. Grieco; Maysa M. Clementino; Ana Tereza Ribeiro de Vasconcelos; Eloi S. Garcia; Wanderley de Souza; Rodolpho M. Albano; Orlando B. Martins

The invasive land snail Achatina fulica is one of the most damaging agricultural pests worldwide representing a potentially serious threat to natural ecosystems and human health. This species is known to carry parasites and harbors a dense and metabolically active microbial community; however, little is known about its diversity and composition. Here, we assessed for the first time the complexity of bacterial communities occurring in the digestive tracts of field-collected snails (FC) by using culture-independent molecular analysis. Crop and intestinal bacteria in FC were then compared to those from groups of snails that were reared in the laboratory (RL) on a sugarcane-based diet. Most of the sequences recovered were novel and related to those reported for herbivorous gut. Changes in the relative abundance of Bacteroidetes and Firmicutes were observed when the snails were fed a high-sugar diet, suggesting that the snail gut microbiota can influence the energy balance equation. Furthermore, this study represents a first step in gaining a better understanding of land snail gut microbiota and shows that this is a complex holobiont system containing diverse, abundant and active microbial communities.


PLOS ONE | 2011

Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

Cynthia B. Silveira; Ricardo P. Vieira; Rodolfo Paranhos; Rodolpho M. Albano; Orlando B. Martins

Background Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. Methodology/Principal Findings We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Conclusions/Significance Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean.

Collaboration


Dive into the Orlando B. Martins's collaboration.

Top Co-Authors

Avatar

Ricardo P. Vieira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodolpho M. Albano

Rio de Janeiro State University

View shared research outputs
Top Co-Authors

Avatar

Cynthia B. Silveira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Rodolfo Paranhos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Sylvia Maria Campbell Alquéres

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Rodrigo Volcan Almeida

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Alessandra M. Gonzalez

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Aline S. Turque

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Tito Lívio Moitinho Alves

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge