Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orlando Domínguez is active.

Publication


Featured researches published by Orlando Domínguez.


Nature | 2013

Reprogramming in vivo produces teratomas and iPS cells with totipotency features

Maria Alba Abad; Lluc Mosteiro; Cristina Pantoja; Marta Cañamero; Teresa Rayon; Inmaculada Ors; Osvaldo Graña; Diego Megías; Orlando Domínguez; Dolores Martínez; Miguel Manzanares; Sagrario Ortega; Manuel Serrano

Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.


Nature Cell Biology | 2010

Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites

Paula Martínez; Maria Thanasoula; Ana Rita Carlos; Gonzalo Gómez-López; Agueda M. Tejera; Stefan Schoeftner; Orlando Domínguez; David G. Pisano; Madalena Tarsounas; Maria A. Blasco

Rap1 is a component of the shelterin complex at mammalian telomeres, but its in vivo role in telomere biology has remained largely unknown to date. Here we show that Rap1 deficiency is dispensable for telomere capping but leads to increased telomere recombination and fragility. We generated cells and mice deleted for Rap1; mice with Rap1 deletion in stratified epithelia were viable but had shorter telomeres and developed skin hyperpigmentation in adulthood. By performing chromatin immunoprecipitation coupled with ultrahigh-throughput sequencing, we found that Rap1 binds to both telomeres and to extratelomeric sites through the (TTAGGG)2 consensus motif. Extratelomeric Rap1-binding sites were enriched at subtelomeric regions, in agreement with preferential deregulation of subtelomeric genes in Rap1-deficient cells. More than 70% of extratelomeric Rap1-binding sites were in the vicinity of genes, and 31% of the genes deregulated in Rap1-null cells contained Rap1-binding sites, suggesting a role for Rap1 in transcriptional control. These findings place a telomere protein at the interface between telomere function and transcriptional regulation.


Nature Genetics | 2013

Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy

Cristina Balbás-Martínez; Ana Sagrera; Enrique Carrillo-de-Santa-Pau; Julie Earl; Mirari Marquez; Miguel Vazquez; Eleonora Lapi; Francesc Castro-Giner; Sergi Beltran; Mònica Bayés; Alfredo Carrato; Juan C. Cigudosa; Orlando Domínguez; Marta Gut; Jesús Herranz; Nuria Juanpere; Manolis Kogevinas; Xavier Langa; Elena Lopez-Knowles; José A. Lorente; Josep Lloreta; David G. Pisano; Laia Richart; Daniel Rico; Rocío Salgado; Adonina Tardón; Stephen J. Chanock; Simon Heath; Alfonso Valencia; Ana Losada

Urothelial bladder cancer (UBC) is heterogeneous at the clinical, pathological and genetic levels. Tumor invasiveness (T) and grade (G) are the main factors associated with outcome and determine patient management. A discovery exome sequencing screen (n = 17), followed by a prevalence screen (n = 60), identified new genes mutated in this tumor coding for proteins involved in chromatin modification (MLL2, ASXL2 and BPTF), cell division (STAG2, SMC1A and SMC1B) and DNA repair (ATM, ERCC2 and FANCA). STAG2, a subunit of cohesin, was significantly and commonly mutated or lost in UBC, mainly in tumors of low stage or grade, and its loss was associated with improved outcome. Loss of expression was often observed in chromosomally stable tumors, and STAG2 knockdown in bladder cancer cells did not increase aneuploidy. STAG2 reintroduction in non-expressing cells led to reduced colony formation. Our findings indicate that STAG2 is a new UBC tumor suppressor acting through mechanisms that are different from its role in preventing aneuploidy.


Cell Stem Cell | 2012

Ezh1 Is Required for Hematopoietic Stem Cell Maintenance and Prevents Senescence-like Cell Cycle Arrest

Isabel Hidalgo; Antonio Herrera-Merchan; José Manuel Ligos; Laura Carramolino; Javier Nuñez; Fernando Martínez; Orlando Domínguez; Miguel Torres; Susana Gonzalez

Polycomb group (PcG) proteins are key epigenetic regulators of hematopietic stem cell (HSC) fate. The PcG members Ezh2 and Ezh1 are important determinants of embryonic stem cell identity, and the transcript levels of these histone methyltransferases are inversely correlated during development. However, the role of Ezh1 in somatic stem cells is largely unknown. Here we show that Ezh1 maintains repopulating HSCs in a slow-cycling, undifferentiated state, protecting them from senescence. Ezh1 ablation induces significant loss of adult HSCs, with concomitant impairment of their self-renewal capacity due to a potent senescence response. Epigenomic and gene expression changes induced by Ezh1 deletion in senesced HSCs demonstrated that Ezh1-mediated PRC2 activity catalyzes monomethylation and dimethylation of H3K27. Deletion of Cdkn2a on the Ezh1 null background rescued HSC proliferation and survival. Our results suggest that Ezh1 is an important histone methyltransferase for HSC maintenance.


American Journal of Pathology | 2002

Identification of Genes Involved in Resistance to Interferon-α in Cutaneous T-Cell Lymphoma

Lorraine Tracey; Raquel Villuendas; Pablo Ortiz; Ana Dopazo; Inmaculada Spiteri; Luis Lombardia; José Luis Rodríguez-Peralto; Jesús Fernández-Herrera; Almudena Hernández; Javier Fraga; Orlando Domínguez; Javier Herrero; Miguel A. Alonso; Joaquín Dopazo; Miguel A. Piris

Interferon-α therapy has been shown to be active in the treatment of mycosis fungoides although the individual response to this therapy is unpredictable and dependent on essentially unknown factors. In an effort to better understand the molecular mechanisms of interferon-α resistance we have developed an interferon-α resistant variant from a sensitive cutaneous T-cell lymphoma cell line. We have performed expression analysis to detect genes differentially expressed between both variants using a cDNA microarray including 6386 cancer-implicated genes. The experiments showed that resistance to interferon-α is consistently associated with changes in the expression of a set of 39 genes, involved in signal transduction, apoptosis, transcription regulation, and cell growth. Additional studies performed confirm that STAT1 and STAT3 expression and interferon-α induction and activation are not altered between both variants. The gene MAL, highly overexpressed by resistant cells, was also found to be expressed by tumoral cells in a series of cutaneous T-cell lymphoma patients treated with interferon-α and/or photochemotherapy. MAL expression was associated with longer time to complete remission. Time-course experiments of the sensitive and resistant cells showed a differential expression of a subset of genes involved in interferon-response (1 to 4 hours), cell growth and apoptosis (24 to 48 hours.), and signal transduction.


Blood | 2014

PLCG1 mutations in cutaneous T-cell lymphomas

José P. Vaqué; Gonzalo Gómez-López; Verónica Monsálvez; Ignacio Varela; Nerea Martínez; Cristina Pérez; Orlando Domínguez; Osvaldo Graña; José Luis Rodríguez-Peralto; Socorro M. Rodríguez-Pinilla; Carmen González-Vela; Miriam Rubio-Camarillo; Esperanza Martín-Sánchez; David G. Pisano; Evangelia Papadavid; Theodora Papadaki; Luis Requena; José A. García-Marco; Miriam Méndez; Mariano Provencio; Dolores Suárez-Massa; Concepción Postigo; David San Segundo; Marcos López-Hoyos; Pablo L. Ortiz-Romero; Miguel A. Piris; Margarita Sánchez-Beato

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of primary cutaneous T-cell lymphoproliferative processes, mainly composed of mycosis fungoides and Sézary syndrome, the aggressive forms of which lack an effective treatment. The molecular pathogenesis of CTCL is largely unknown, although neoplastic cells show increased signaling from T-cell receptors (TCRs). DNAs from 11 patients with CTCL, both normal and tumoral, were target-enriched and sequenced by massive parallel sequencing for a selection of 524 TCR-signaling-related genes. Identified variants were validated by capillary sequencing. Multiple mutations were found that affected several signaling pathways, such as TCRs, nuclear factor κB, or Janus kinase/signal transducer and activator of transcription, but PLCG1 was found to be mutated in 3 samples, 2 of which featured a redundant mutation (c.1034T>C, S345F) in exon 11 that affects the PLCx protein catalytic domain. This mutation was further analyzed by quantitative polymerase chain reaction genotyping in a new cohort of 42 patients with CTCL, where it was found in 19% of samples. Immunohistochemical analysis for nuclear factor of activated T cells (NFAT) showed that PLCG1-mutated cases exhibited strong NFAT nuclear immunostaining. Functional studies demonstrated that PLCG1 mutants elicited increased downstream signaling toward NFAT activation, and inhibition of this pathway resulted in reduced CTCL cell proliferation and cell viability. Thus, increased proliferative and survival mechanisms in CTCL may partially depend on the acquisition of somatic mutations in PLCG1 and other genes that are essential for normal T-cell differentiation.


Clinical Cancer Research | 2004

Expression Profiling of T-Cell Lymphomas Differentiates Peripheral and Lymphoblastic Lymphomas and Defines Survival Related Genes

Beatriz Martínez-Delgado; Bárbara Meléndez; Marta Cuadros; Javier Alvarez; José M. Castrillo; Ana Ruiz de la Parte; Manuela Mollejo; Carmen Bellas; Ramon Diaz; Luis Lombardia; Fatima Al-Shahrour; Orlando Domínguez; Alberto Cascón; Mercedes Robledo; Carmen Rivas; Javier Benitez

Purpose: T-Cell lymphomas constitute heterogeneous and aggressive tumors in which pathogenic alterations remain largely unknown. Expression profiling has demonstrated to be a useful tool for molecular classification of tumors. Experimental Design: Using DNA microarrays (CNIO-OncoChip) containing 6386 cancer-related genes, we established the expression profiling of T-cell lymphomas and compared them to normal lymphocytes and lymph nodes. Results: We found significant differences between the peripheral and lymphoblastic T-cell lymphomas, which include a deregulation of nuclear factor-κB signaling pathway. We also identify differentially expressed genes between peripheral T-cell lymphoma tumors and normal T lymphocytes or reactive lymph nodes, which could represent candidate tumor markers of these lymphomas. Additionally, a close relationship between genes associated to survival and those that differentiate among the stages of disease and responses to therapy was found. Conclusions: Our results reflect the value of gene expression profiling to gain insight about the molecular alterations involved in the pathogenesis of T-cell lymphomas.


Nature Communications | 2012

Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease

Antonio Herrera-Merchan; Lorena Arranz; José Manuel Ligos; A. de Molina; Orlando Domínguez; Susana Gonzalez

Recent evidence shows increased and decreased expression of Ezh2 in cancer, suggesting a dual role as an oncogene or tumour suppressor. To investigate the mechanism by which Ezh2-mediated H3K27 methylation leads to cancer, we generated conditional Ezh2 knock-in (Ezh2-KI) mice. Here we show that induced Ezh2 haematopoietic expression increases the number and proliferation of repopulating haematopoietic stem cells. Ezh2-KI mice develop myeloproliferative disorder, featuring excessive myeloid expansion in bone marrow and spleen, leukocytosis and splenomegaly. Competitive and serial transplantations demonstrate progressive myeloid commitment of Ezh2-KI haematopoietic stem cells. Transplanted self-renewing haematopoietic stem cells from Ezh2-KI mice induce myeloproliferative disorder, suggesting that the Ezh2 gain-of-function arises in the haematopoietic stem cell pool, and not at later stages of myelopoiesis. At the molecular level, Ezh2 regulates haematopoietic stem cell-specific genes such as Evi-1 and Ntrk3, aberrantly found in haematologic malignancies. These results demonstrate a stem cell-specific Ezh2 oncogenic role in myeloid disorders, and suggest possible therapeutic applications in Ezh2-related haematological malignancies.


Human Molecular Genetics | 2012

MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells

Silvia Alvarez-Diaz; Noelia Valle; Gemma Ferrer-Mayorga; Luis Lombardia; Mercedes Herrera; Orlando Domínguez; Miguel F. Segura; Félix Bonilla; Eva Hernando; Alberto Muñoz

Vitamin D deficiency is associated with the high risk of colon cancer and a variety of other diseases. The active vitamin D metabolite 1α,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) regulates gene transcription via its nuclear receptor (VDR), and posttranscriptional regulatory mechanisms of gene expression have also been proposed. We have identified microRNA-22 (miR-22) and several other miRNA species as 1,25(OH)(2)D(3) targets in human colon cancer cells. Remarkably, miR-22 is induced by 1,25(OH)(2)D(3) in a time-, dose- and VDR-dependent manner. In SW480-ADH and HCT116 cells, miR-22 loss-of-function by transfection of a miR-22 inhibitor suppresses the antiproliferative effect of 1,25(OH)(2)D(3). Additionally, miR-22 inhibition increases cell migration per se and decreases the antimigratory effect of 1,25(OH)(2)D(3) in both cell types. In silico analysis shows a significant overlap between genes suppressed by 1,25(OH)(2)D(3) and miR-22 putative target genes. Consistently, miR-22 inhibition abrogates the 1,25(OH)(2)D(3)-mediated suppression of NELL2, OGN, HNRPH1, RERE and NFAT5 genes. In 39 out of 50 (78%) human colon cancer patients, miR-22 expression was found lower in the tumour than in the matched normal tissue and correlated directly with that of VDR. Our results indicate that miR-22 is induced by 1,25(OH)(2)D(3) in human colon cancer cells and it may contribute to its antitumour action against this neoplasia.


Cell Cycle | 2010

miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal

Antonio Herrera-Merchan; Celia Cerrato; Guadalupe Luengo; Orlando Domínguez; Miguel A. Piris; Manuel Serrano; Susana Gonzalez

Hematopoietic stem cells (HSCs) are defined by their exclusive capacity to both self-renew and to give rise to multipotent progenitors (MPPs) that in turn differentiate into the mature blood cell lineages. The tumor suppressor p53, in addition to its role in the regulation of the cell cycle, plays an importatn role in HSC self-renewal, although it has not fully resolved. Here we report that in super-p53 mice (sp53), which carry one extra gene dose of p53, the miR-33 is down-regulated in HSCs and highly expressed in MPPs. Transplantation assays of miR-33-transduced sp53 HSC results in a significant acquisition of repopulating capacity and a decrease of recipients survival. Moreover, high levels of miR-33 represses the endogenous level of p53 protein in murine embryonic fibroblasts (MEFs), leads both to neoplastic transformation and anchorage independent growth of MEFs, and displays a decrease of apoptotic response using tumor-derived cell lines. Accordingly, we demonstrate that miR-33-mediated down-regulation of p53 is dependent on the binding of miR-33 to two conserved motifs in the 3′UTR of p53. Together, these data show that the miR-33 modifies HSC repopulating efficiency of sp53 mice by impairing the p53 function. Defining the role of miR-33 in controlling the HSC self-renewal through p53 may lead to the prevention and treatment of hematopoietic disorders.

Collaboration


Dive into the Orlando Domínguez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Pisano

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Manuel Serrano

Catalan Institution for Research and Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Luis Lombardia

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Miguel A. Piris

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Osvaldo Graña

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonio Herrera-Merchan

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria A. Blasco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Susana Gonzalez

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Researchain Logo
Decentralizing Knowledge