Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orly Reiner is active.

Publication


Featured researches published by Orly Reiner.


Neuron | 1999

Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons.

Fiona Francis; Annette Koulakoff; Dominique Boucher; Philippe Chafey; Bruce T. Schaar; Marie-Claude Vinet; Gaëlle Friocourt; Nathalie McDonnell; Orly Reiner; Axel Kahn; Susan K. McConnell; Yoheved Berwald-Netter; Philippe Denoulet; Jamel Chelly

Recently, we and others reported that the doublecortin gene is responsible for X-linked lissencephaly and subcortical laminar heterotopia. Here, we show that Doublecortin is expressed in the brain throughout the period of corticogenesis in migrating and differentiating neurons. Immunohistochemical studies show its localization in the soma and leading processes of tangentially migrating neurons, and a strong axonal labeling is observed in differentiating neurons. In cultured neurons, Doublecortin expression is highest in the distal parts of developing processes. We demonstrate by sedimentation and microscopy studies that Doublecortin is associated with microtubules (MTs) and postulate that it is a novel MAP. Our data suggest that the cortical dysgeneses associated with the loss of Doublecortin function might result from abnormal cytoskeletal dynamics in neuronal cell development.


The EMBO Journal | 1997

Reduction of microtubule catastrophe events by LIS1, platelet‐activating factor acetylhydrolase subunit

Tamar Sapir; Michael Elbaum; Orly Reiner

Forming the structure of the human brain involves extensive neuronal migration, a process dependent on cytoskeletal rearrangement. Neuronal migration is believed to be disrupted in patients exhibiting the developmental brain malformation lissencephaly. Previous studies have shown that LIS1, the defective gene found in patients with lissencephaly, is a subunit of the platelet‐activating factor acetylhydrolase. Our results indicated that LIS1 has an additional function. By interacting with tubulin it suppresses microtubule dynamics. We detected LIS1 interaction with microtubules by immunostaining and co‐assembly. LIS1–tubulin interactions were assayed by co‐immunoprecipitation and by surface plasmon resonance changes. Microtubule dynamic measurements in vitro indicated that physiological concentrations of LIS1 indeed reduced microtubule catastrophe events, thereby resulting in a net increase in the maximum length of the microtubules. Furthermore, the LIS1 protein concentration in the brain, measured by quantitative Western blots, is high and is approximately one‐fifth of the concentration of brain tubulin. Our new findings show that LIS1 is a protein exhibiting several cellular interactions, and the interaction with the cytoskeleton may prove to be the mode of transducing a signal generated by platelet‐activating factor. We postulate that the LIS1–cytoskeletal interaction is important for neuronal migration, a process that is defective in lissencephaly patients.


Molecular and Cellular Biology | 2002

LIS1, CLIP-170's Key to the Dynein/Dynactin Pathway

Frédéric M. Coquelle; Michal Caspi; Fabrice P. Cordelieres; Jim Dompierre; Denis Dujardin; Cynthia Koifman; Patrick Martin; Casper C. Hoogenraad; Anna Akhmanova; Niels Galjart; Jan R. De Mey; Orly Reiner

ABSTRACT CLIP-170 is a plus-end tracking protein which may act as an anticatastrophe factor. It has been proposed to mediate the association of dynein/dynactin to microtubule (MT) plus ends, and it also binds to kinetochores in a dynein/dynactin-dependent fashion, both via its C-terminal domain. This domain contains two zinc finger motifs (proximal and distal), which are hypothesized to mediate protein-protein interactions. LIS1, a protein implicated in brain development, acts in several processes mediated by the dynein/dynactin pathway by interacting with dynein and other proteins. Here we demonstrate colocalization and direct interaction between CLIP-170 and LIS1. In mammalian cells, LIS1 recruitment to kinetochores is dynein/dynactin dependent, and recruitment there of CLIP-170 is dependent on its site of binding to LIS1, located in the distal zinc finger motif. Overexpression of CLIP-170 results in a zinc finger-dependent localization of a phospho-LIS1 isoform and dynactin to MT bundles, raising the possibility that CLIP-170 and LIS1 regulate dynein/dynactin binding to MTs. This work suggests that LIS1 is a regulated adapter between CLIP-170 and cytoplasmic dynein at sites involved in cargo-MT loading, and/or in the control of MT dynamics.


The EMBO Journal | 2004

DCX, a new mediator of the JNK pathway

Amos Gdalyahu; Indraneel Ghosh; Talia Levy; Tamar Sapir; Sivan Sapoznik; Yael Fishler; David Azoulai; Orly Reiner

Mutations in the X‐linked gene DCX result in lissencephaly in males, and abnormal neuronal positioning in females, suggesting a role for this gene product during neuronal migration. In spite of several known protein interactions, the involvement of DCX in a signaling pathway is still elusive. Here we demonstrate that DCX is a substrate of JNK and interacts with both c‐Jun N‐terminal kinase (JNK) and JNK interacting protein (JIP). The localization of this signaling module in the developing brain suggests its functionality in migrating neurons. The localization of DCX at neurite tips is determined by its interaction with JIP and by the interaction of the latter with kinesin. DCX is phosphorylated by JNK in growth cones. DCX mutated in sites phosphorylated by JNK affected neurite outgrowth, and the velocity and relative pause time of migrating neurons. We hypothesize that during neuronal migration, there is a need to regulate molecular motors that are working in the cell in opposite directions: kinesin (a plus‐end directed molecular motor) versus dynein (a minus‐end directed molecular motor).


Proceedings of the National Academy of Sciences of the United States of America | 2001

Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization

Aviv Cahana; Teresa Escamez; Richard S. Nowakowski; Nancy L. Hayes; MaiBritt Giacobini; Alexander von Holst; Orit Shmueli; Tamar Sapir; Susan K. McConnell; Wolfgang Wurst; Salvador Martinez; Orly Reiner

Lissencephaly is a severe brain malformation in humans. To study the function of the gene mutated in lissencephaly (LIS1), we deleted the first coding exon from the mouse Lis1 gene. The deletion resulted in a shorter protein (sLIS1) that initiates from the second methionine, a unique situation because most LIS1 mutations result in a null allele. This mutation mimics a mutation described in one lissencephaly patient with a milder phenotype. Homozygotes are early lethal, although heterozygotes are viable and fertile. Most strikingly, the morphology of cortical neurons and radial glia is aberrant in the developing cortex, and the neurons migrate more slowly. This is the first demonstration, to our knowledge, of a cellular abnormality in the migrating neurons after Lis1 mutation. Moreover, cortical plate splitting and thalomocortical innervation are also abnormal. Biochemically, the mutant protein is not capable of dimerization, and enzymatic activity is elevated in the embryos, thus a demonstration of the in vivo role of LIS1 as a subunit of PAF-AH. This mutation allows us to determine a hierarchy of functions that are sensitive to LIS1 dosage, thus promoting our understanding of the role of LIS1 in the developing cortex.


Current Biology | 1998

The lissencephaly gene product Lis1, a protein involved in neuronal migration, interacts with a nuclear movement protein, NudC

S. M. Morris; Urs Albrecht; Orly Reiner; Gregor Eichele; Li Yuan Yu-Lee

Important clues to how the mammalian cerebral cortex develops are provided by the analysis of genetic diseases that cause cortical malformations [1-5]. People with Miller-Dieker syndrome (MDS) or isolated lissencephaly sequence (ILS) have a hemizygous deletion or mutation in the LIS1 gene [3,6]; both conditions are characterized by a smooth cerebral surface, a thickened cortex with four abnormal layers, and misplaced neurons [7,8]. LIS1 is highly expressed in the ventricular zone and the cortical plate [9,10], and its product, Lis1, has seven WD repeats [3]; several proteins with such repeats have been shown to interact with other polypeptides, giving rise to multiprotein complexes [11]. Lis1 copurifies with platelet-activating factor acetylhydrolase subunits alpha 1 and alpha 2 [12], and with tubulin; it also reduces microtubule catastrophe events in vitro [13]. We used a yeast two-hybrid screen to isolate new Lis1-interacting proteins and found a mammalian ortholog of NudC, a protein required for nuclear movement in Aspergillus nidulans [14]. The specificity of the mammalian NudC-Lis1 interaction was demonstrated by protein-protein interaction assays in vitro and by co-immunoprecipitation from mouse brain extracts. In addition, the murine mNudC and mLis1 genes are coexpressed in the ventricular zone of the forebrain and in the cortical plate. The interaction of Lis1 with NudC, in conjunction with the MDS and ILS phenotypes, raises the possibility that nuclear movement in the ventricular zone is tied to the specification of neuronal fates and thus to cortical architecture.


The Journal of Neuroscience | 1995

Lissencephaly gene (LIS1) expression in the CNS suggests a role in neuronal migration

Orly Reiner; Urs Albrecht; M. Gordon; K. A. Chianese; C. Wong; O. Gal-Gerber; Tamar Sapir; L. D. Siracusa; A. M. Buchberg; C. T. Caskey; Gregor Eichele

Miller-Dieker lissencephaly syndrome (MDS) is a human developmental brain malformation caused by neuronal migration defects resulting in abnormal layering of the cerebral cortex. LIS1, the gene defective in MDS, encodes a subunit of brain platelet-activating factor (PAF) acetylhydrolase which inactivates PAF, a neuroregulatory molecule. We have isolated murine cDNAs homologous to human LIS1 and mapped these to three different chromosomal loci (Lis1, Lis3, Lis4). The predicted sequences of murine Lis1 protein and its human homolog LIS1 are virtually identical. In the developing mouse and human, Lis1 and LIS1 genes were strongly expressed in the cortical plate. In the adult mouse Lis1 transcripts were abundant in cortex and hippocampus. The direct correlation between cortical defects in MDS patients and Lis1 expression in the murine cortex suggest that the mouse is a model system suitable to study the mechanistic basis of this intriguing genetic disease.


Neuron | 2006

Doublecortin-like Kinase Controls Neurogenesis by Regulating Mitotic Spindles and M Phase Progression

Tianzhi Shu; Huang-Chun Tseng; Tamar Sapir; Patrick Stern; Ying Zhou; Kamon Sanada; Andre Fischer; Frédéric M. Coquelle; Orly Reiner; Li-Huei Tsai

The mechanisms controlling neurogenesis during brain development remain relatively unknown. Through a differential protein screen with developmental versus mature neural tissues, we identified a group of developmentally enriched microtubule-associated proteins (MAPs) including doublecortin-like kinase (DCLK), a protein that shares high homology with doublecortin (DCX). DCLK, but not DCX, is highly expressed in regions of active neurogenesis in the neocortex and cerebellum. Through a dynein-dependent mechanism, DCLK regulates the formation of bipolar mitotic spindles and the proper transition from prometaphase to metaphase during mitosis. In cultured cortical neural progenitors, DCLK RNAi Lentivirus disrupts the structure of mitotic spindles and the progression of M phase, causing an increase of cell-cycle exit index and an ectopic commitment to a neuronal fate. Furthermore, both DCLK gain and loss of function in vivo specifically promote a neuronal identity in neural progenitors. These data provide evidence that DCLK controls mitotic division by regulating spindle formation and also determines the fate of neural progenitors during cortical neurogenesis.


The Journal of Neuroscience | 2008

Accurate Balance of the Polarity Kinase MARK2/Par-1 Is Required for Proper Cortical Neuronal Migration

Tamar Sapir; Sivan Sapoznik; Talia Levy; Danit Finkelshtein; Anat Shmueli; Thomas Timm; Eva-Maria Mandelkow; Orly Reiner

Radial neuronal migration is key in structuring the layered cortex. Here we studied the role of MARK2/Par-1 in this process. The dual name stands for the MAP/microtubule affinity-regulating kinase 2 (MARK2) and the known polarity kinase 1 (Par-1). Reduced MARK2 levels using in utero electroporation resulted in multipolar neurons stalled at the intermediate zone border. Reintroduction of the wild-type kinase postmitotically improved neuronal migration. Our results indicated that reduction in MARK2 affected centrosomal dynamics in migrating neurons of the cerebral cortex. Increased MARK2 has been shown to destabilize microtubules, and here we show for the first time that reduced MARK2 stabilized microtubules in primary cultured neurons. Kinase-independent activity permitted multipolar-to-bipolar transition but did not restore proper migration. Increased MARK2 levels resulted in a different phenotype, which is loss of neuronal polarity. MARK2 kinase activity reduction hindered migration in the developing brain, which was rescued by increasing kinase activity. Our results stress the necessity of maintaining dynamic microtubules for proper neuronal migration. Furthermore, the exact requirements for MARK2 and its kinase activity vary during the course of neuronal migration. Collectively, our results stress the requirements for the different roles of MARK2 during neuronal migration.


BMC Genomics | 2006

The evolving doublecortin (DCX) superfamily

Orly Reiner; Frédéric M. Coquelle; Bastian Peter; Talia Levy; Anna Kaplan; Tamar Sapir; Irit Orr; Naama Barkai; Gregor Eichele; Sven Bergmann

BackgroundDoublecortin (DCX) domains serve as protein-interaction platforms. Mutations in members of this protein superfamily are linked to several genetic diseases. Mutations in the human DCX gene result in abnormal neuronal migration, epilepsy, and mental retardation; mutations in RP1 are associated with a form of inherited blindness, and DCDC2 has been associated with dyslectic reading disabilities.ResultsThe DCX-repeat gene family is composed of eleven paralogs in human and in mouse. Its evolution was followed across vertebrates, invertebrates, and was traced to unicellular organisms, thus enabling following evolutionary additions and losses of genes or domains. The N-terminal and C-terminal DCX domains have undergone sub-specialization and divergence. Developmental in situ hybridization data for nine genes was generated. In addition, a novel co-expression analysis for most human and mouse DCX superfamily-genes was performed using high-throughput expression data extracted from Unigene. We performed an in-depth study of a complete gene superfamily using several complimentary methods.ConclusionThis study reveals the existence and conservation of multiple members of the DCX superfamily in different species. Sequence analysis combined with expression analysis is likely to be a useful tool to predict correlations between human disease and mouse models. The sub-specialization of some members due to restricted expression patterns and sequence divergence may explain the successful addition of genes to this family throughout evolution.

Collaboration


Dive into the Orly Reiner's collaboration.

Top Co-Authors

Avatar

Tamar Sapir

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Talia Levy

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Anna Gorelik

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Salvador Martinez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Aviv Cahana

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mia Horowitz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michal Caspi

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Orit Shmueli

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Sivan Sapoznik

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge