Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orna Almog is active.

Publication


Featured researches published by Orna Almog.


Nano Letters | 2008

SP1 protein-based nanostructures and arrays.

Izhar Medalsy; Or Dgany; Mukhles Sowwan; Hezy Cohen; Alevtyna Yukashevska; Sharon G. Wolf; Amnon Wolf; Abraham Koster; Orna Almog; Ira Marton; Yehonathan Pouny; Arie Altman; Oded Shoseyov; Danny Porath

Controlled formation of complex nanostructures is one of the main goals of nanoscience and nanotechnology. Stable Protein 1 (SP1) is a boiling-stable ring protein complex, 11 nm in diameter, which self-assembles from 12 identical monomers. SP1 can be utilized to form large ordered arrays; it can be easily modified by genetic engineering to produce various mutants; it is also capable of binding gold nanoparticles (GNPs) and thus forming protein-GNP chains made of alternating SP1s and GNPs. We report the formation and the protocols leading to the formation of those nanostructures and their characterization by transmission electron microscopy, atomic force microscopy, and electrostatic force microscopy. Further control over the GNP interdistances within the protein-GNP chains may lead to the formation of nanowires and structures that may be useful for nanoelectronics.


Bipolar Disorders | 2009

Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect.

Liad Mann; Eliahu Heldman; Yuly Bersudsky; Stephen F. Vatner; Yoshihiro Ishikawa; Orna Almog; R.H. Belmaker; Galila Agam

OBJECTIVES Lithium, valproate, and carbamazepine decrease stimulated brain cyclic-AMP (cAMP) levels. Adenylyl cyclase (AC), of which there are nine membrane-bound isoforms (AC1-AC9), catalyzes the formation of cAMP. We have recently demonstrated preferential inhibition of AC5 by lithium. We now sought to determine whether carbamazepine and valproate also preferentially inhibit specific AC isoforms or decrease cAMP levels via different mechanisms. METHODS COS7 cells were transfected with one of AC1-AC9, with or without D1-dopamine receptors. Carbamazepines and valproates effect on forskolin- or D1 agonist-stimulated ACs was studied. The effect of Mg(2+) on lithiums inhibition was studied in membrane-enriched fraction from COS7 cells co-expressing AC5 and D1 receptors. AC5 knockout mice were tested for a behavioral phenotype similar to that of lithium treatment. RESULTS Carbamazepine preferentially inhibited forskolin-stimulated AC5 and AC1 and all D1 agonist-stimulated ACs, with AC5 and AC7 being the most sensitive. When compared to 1 or 3 mM Mg(2+), 10 mM Mg(2+) reduced lithium-induced AC5 inhibition by 70%. In silico modeling suggests that among AC isoforms carbamazepine preferentially affects AC1 and AC5 by interacting with the catechol-estrogen site. Valproate did not affect any forskolin- or D1 receptor-stimulated AC. AC5 knockout mice responded similarly to antidepressant- or lithium-treated wild-types in the forced-swim test but not in the amphetamine-induced hyperactivity mania model. CONCLUSIONS Lithium and carbamazepine preferentially inhibit AC5, albeit via different mechanisms. Lithium competes with Mg(2+), which is essential for AC activity; carbamazepine competes for ACs catechol-estrogen site. Antidepressant-like behavior of AC5 knockout mice in the forced-swim test supports the notion that AC5 inhibition is involved in the antidepressant effect of lithium and carbamazepine. The effect of lithium and carbamazepine to lower cAMP formation in AC5-rich dopaminergic brain regions suggests that D1-dopamine receptors in these regions are involved in the antidepressant effect of mood stabilizers.


Proteins | 2009

The Crystal Structures of the Psychrophilic Subtilisin S41 and the Mesophilic Subtilisin Sph Reveal the Same Calcium-Loaded State.

Orna Almog; Ana Gonzalez; Noa Godin; Marina de Leeuw; Marlene Mekel; Daniela Klein; Sergei Braun; Gil Shoham; Richard Walter

We determine and compare the crystal structure of two proteases belonging to the subtilisin superfamily: S41, a cold‐adapted serine protease produced by Antarctic bacilli, at 1.4 Å resolution and Sph, a mesophilic serine protease produced by Bacillus sphaericus, at 0.8 Å resolution. The purpose of this comparison was to find out whether multiple calcium ion binding is a molecular factor responsible for the adaptation of S41 to extreme low temperatures. We find that these two subtilisins have the same subtilisin fold with a root mean square between the two structures of 0.54 Å. The final models for S41 and Sph include a calcium‐loaded state of five ions bound to each of these two subtilisin molecules. None of these calcium‐binding sites correlate with the high affinity known binding site (site A) found for other subtilisins. Structural analysis of the five calcium‐binding sites found in these two crystal structures indicate that three of the binding sites have two side chains of an acidic residue coordinating the calcium ion, whereas the other two binding sites have either a main‐chain carbonyl, or only one acidic residue side chain coordinating the calcium ion. Thus, we conclude that three of the sites are of high affinity toward calcium ions, whereas the other two are of low affinity. Because Sph is a mesophilic subtilisin and S41 is a psychrophilic subtilisin, but both crystal structures were found to bind five calcium ions, we suggest that multiple calcium ion binding is not responsible for the adaptation of S41 to low temperatures. Proteins 2009.


Acta Crystallographica Section D-biological Crystallography | 2003

Crystallization and preliminary X-ray crystallographic analysis of SP1, a novel chaperone-like protein.

Wangxia Wang; Or Dgany; Orly Dym; Arie Altman; Oded Shoseyov; Orna Almog

SP1 (108 amino acids) is a boiling-stable stress-responsive protein. It has no significant sequence homology to other stress-related proteins or to small heat-shock proteins (sHsps). SP1 activity is ATP-independent, similar to other small heat-shock proteins. Based on these features, it is expected that the structure-function relationship of SP1 will be unique. In this work, the crystallization and preliminary crystallographic data of native SP1 and its selenomethionine derivative are described. Recombinant SP1 and its selenomethionine derivative were expressed in Escherichia coli and used for crystallization experiments. SP1 crystals were grown from 0.1 M HEPES pH 7.5, 20% PEG 3K, 0.2 M NaCl. One to four single crystals appeared in each droplet within a few Days and grew to dimensions of about 0.5 x 0.5 x 0.8 mm after about two weeks. Diffraction studies of these crystals at low temperature indicated that they belong to space group I422, with unit-cell parameters a = 89, b = 89, c = 187 A. Efforts to crystallize the selenomethionine derivative of SP1 are in progress.


Journal of basic and clinical physiology and pharmacology | 1991

The composition and organization of photosystem I.

Orna Almog; Ofra Lotan; Gil Shoham; Rachel Nechushtai

Photosystem I, extensively studied in the past decade, was shown to be homologous in all photosynthetic organisms of the higher plants type. Its core complex was found to be highly conserved through evolution from cyanobacteria to higher plants. The genes coding for the subunits of CCI were isolated and the resulting sequences provided information about secondary structural elements. These suggested secondary structures enabled the prediction of the topology of these subunits in the photosynthetic membrane. Structural studies using both electron microscopy and X-ray crystallography, on isolated particles as well as on the complexes in the photosynthetic membrane, led to a better understanding of the overall structure of CCI. Recently two forms of three dimensional crystals of CCI were obtained. These crystals contain all the original components of CCI (both protein and pigments); these components have not been altered by crystallization. It is expected that a detailed crystallographic analysis of these crystals, together with biochemical, spectroscopical and molecular biology studies, will eventually lead to the elucidation of the high resolution structure of the photosystem I core complex and to the understanding of the exact role and mode of action of this complex in the photosynthetic membrane.


BMC Structural Biology | 2009

Conformational changes and loose packing promote E. coli Tryptophanase cold lability

Anna Kogan; Garik Y. Gdalevsky; Yehuda Goldgur; Robert S. Phillips; Abraham H. Parola; Orna Almog

BackgroundOligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2°C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life.ResultsWe studied the reversible cold lability of E. coli Trpase and its Y74F, C298S and W330F mutants. In contrast to the holo E. coli Trpase all apo forms of Trpase dissociated into dimers already at 25°C and even further upon cooling to 2°C. The crystal structures of the two mutants, Y74F and C298S in their apo form were determined at 1.9Å resolution. These apo mutants were found in an open conformation compared to the closed conformation found for P. vulgaris in its holo form. This conformational change is further supported by a high pressure study.ConclusionWe suggest that cold lability of E. coli Trpases is primarily affected by PLP release. The enhanced loss of activity of the three mutants is presumably due to the reduced size of the side chain of the amino acids. This prevents the tight assembly of the active tetramer, making it more susceptible to the cold driven changes in hydrophobic interactions which facilitate PLP release. The hydrophobic interactions along the non catalytic interface overshadow the effect of point mutations and may account for the differences in the dissociation of E. coli Trpase to dimers and P. vulgaris Trpase to monomers.


Acta Crystallographica Section D-biological Crystallography | 2007

The structure of apo tryptophanase from Escherichia coli reveals a wide-open conformation

Natalia Tsesin; Anna Kogan; Garik Y. Gdalevsky; Juha-Pekka Himanen; Abraham H. Parola; Yehuda Goldgur; Orna Almog

The crystal structure of apo tryptophanase from Escherichia coli (space group F222, unit-cell parameters a = 118.4, b = 120.1, c = 171.2 A) was determined at 1.9 A resolution using the molecular-replacement method and refined to an R factor of 20.3% (R(free) = 23.2%). The structure revealed a significant shift in the relative orientation of the domains compared with both the holo form of Proteus vulgaris tryptophanase and with another crystal structure of apo E. coli tryptophanase, reflecting the internal flexibility of the molecule. Domain shifts were previously observed in tryptophanase and in the closely related enzyme tyrosine phenol-lyase, with the holo form found in an open conformation and the apo form in either an open or a closed conformation. Here, a wide-open conformation of the apo form of tryptophanase is reported. A conformational change is also observed in loop 297-303. The structure contains a hydrated Mg(2+) at the cation-binding site and a Cl(-) ion at the subunit interface. The enzyme activity depends on the nature of the bound cation, with smaller ions serving as inhibitors. It is hypothesized that this effect arises from variations of the coordination geometry of the bound cation.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2007

Binding assay and preliminary X-ray crystallographic analysis of ACTIBIND, a protein with anticarcinogenic and antiangiogenic activities

Marina de Leeuw; Levava Roiz; Patricia Smirnoff; Betty Schwartz; Oded Shoseyov; Orna Almog

ACTIBIND is a T2 RNase extracellular glycoprotein produced by the mould Aspergillus niger B1 (CMI CC 324626) that possesses anticarcinogenic and antiangiogenic activities. ACTIBIND was found to be an actin-binding protein that interacts with rabbit muscle actin in a 1:2 molar ratio (ACTIBIND:actin) with a binding constant of 16.17 x 10(4) M(-1). Autoclave-treated ACTIBIND (EI-ACTIBIND) lost its RNase activity, but its actin-binding ability was conserved. ACTIBIND crystals were grown using 20% PEG 3350, 0.2 M ammonium dihydrogen phosphate solution at room temperature (293 K). One to four single crystals appeared in each droplet within a few days and grew to approximate dimensions of 0.5 x 0.5 x 0.5 mm after about two weeks. Diffraction studies of these crystals at low temperature (100 K) indicated that they belong to the P3(1)21 space group, with unit-cell parameters a = 78, b = 78, c = 104 A.


European Neuropsychopharmacology | 2013

Inhibition of inositol monophosphatase (IMPase) at the calbindin-D28k binding site: molecular and behavioral aspects.

Itzhak Levi; Yael Eskira; Miriam Eisenstein; Chaim Gilon; Amnon Hoffman; Yiftach Talgan; Joseph Fanous; Yuly Bersudsky; R.H. Belmaker; Galila Agam; Orna Almog

Bipolar-disorder (manic-depressive illness) is a severe chronic illness affecting ∼1% of the adult population. It is treated with mood-stabilizers, the prototypic one being lithium-salts (lithium), but it has life threatening side-effects and a significant number of patients fail to respond. The lithium-inhibitable enzyme inositol-monophosphatase (IMPase) is one of the viable targets for lithiums mechanism of action. Calbindin-D28k (calbindin) up-regulates IMPase activity. The IMPase-calbindincomplex was modeled using the program MolFit. The in-silico model indicated that the 55-66 amino-acid segment of IMPase anchors calbindin via Lys59 and Lys61 with a glutamate in between (Lys-Glu-Lys motif) and that the motif interacts with residues Asp24 and Asp26 of calbindin. We found that differently from wildtype calbindin, IMPase was not activated by mutated calbindin in which Asp24 and Asp26 were replaced by alanine. Calbindins effect was significantly reduced by a linear peptide with the sequence of amino acids 58-63 of IMPase (peptide 1) and by six amino-acid linear peptides including at least part of the Lys-Glu-Lys motif. The three amino-acid peptide Lys-Glu-Lys or five amino-acid linear peptides containing this motif were ineffective. Mice administered peptide 1 intracerebroventricularly exhibited a significant anti-depressant-like reduced immobility in the forced-swim test. Based on the sequence of peptide 1, and to potentially increase the peptides stability, cyclic and linear pre-cyclic analog peptides were synthesized. One cyclic peptide and one linear pre-cyclic analog peptide inhibited calbindin-activated brain IMPase activity in-vitro. Our findings may lead to the development of molecules capable of inhibiting IMPase activity at an alternative site than that of lithium.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2015

Structures of Escherichia coli tryptophanase in holo and 'semi-holo' forms.

Anna Kogan; Leah Raznov; Garik Y. Gdalevsky; Orna Almog; Abraham H. Parola; Yehuda Goldgur

Two crystal forms of Escherichia coli tryptophanase (tryptophan indole-lyase, Trpase) were obtained under the same crystallization conditions. Both forms belonged to the same space group P43212 but had slightly different unit-cell parameters. The holo crystal form, with pyridoxal phosphate (PLP) bound to Lys270 of both polypeptide chains in the asymmetric unit, diffracted to 2.9 Å resolution. The second crystal form diffracted to 3.2 Å resolution. Of the two subunits in the asymmetric unit, one was found in the holo form, while the other appeared to be in the apo form in a wide-open conformation with two sulfate ions bound in the vicinity of the active site. The conformation of all holo subunits is the same in both crystal forms. The structures suggest that Trpase is flexible in the apo form. Its conformation partially closes upon binding of PLP. The closed conformation might correspond to the enzyme in its active state with both cofactor and substrate bound in a similar way as in tyrosine phenol-lyase.

Collaboration


Dive into the Orna Almog's collaboration.

Top Co-Authors

Avatar

Abraham H. Parola

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Anna Kogan

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Galila Agam

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Garik Y. Gdalevsky

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Yehuda Goldgur

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Oded Shoseyov

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yuly Bersudsky

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Gil Shoham

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

R.H. Belmaker

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Amnon Hoffman

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge