Örs Legeza
Eötvös Loránd University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Örs Legeza.
Physical Review B | 2003
Örs Legeza; J. Röder; Bernd A. Hess
We have applied the momentum space version of the density-matrix renormalization-group method (k-DMRG) in quantum chemistry in order to study the accuracy of the algorithm in this new context. We have shown numerically that it is possible to determine the desired accuracy of the method in advance of the calculations by dynamically controlling the truncation error and the number of block states using a novel protocol that we dubbed dynamical block state selection protocol. The relationship between the real error and truncation error has been studied as a function of the number of orbitals and the fraction of filled orbitals. We have calculated the ground state of the molecules CH 2 , H 2 O, and F 2 as well as the first excited state of CH 2 . Our largest calculations were carried out with 57 orbitals, the largest number of block states was 1500-2000, and the largest dimensions of the Hilbert space of the superblock configuration was 800 0000-1 200 000.
Journal of Physical Chemistry Letters | 2012
Katharina Boguslawski; Pawel̷ Tecmer; Örs Legeza; Markus Reiher
Electron correlation effects are essential for an accurate ab initio description of molecules. A quantitative a priori knowledge of the single- or multireference nature of electronic structures as well as of the dominant contributions to the correlation energy can facilitate the decision regarding the optimum quantum chemical method of choice. We propose concepts from quantum information theory as orbital entanglement measures that allow us to evaluate the single- and multireference character of any molecular structure in a given orbital basis set. By studying these measures we can detect possible artifacts of small active spaces.
Molecular Physics | 2003
Örs Legeza; J. Röder; Bernd A. Hess
We have studied the ionic-neutral curve crossing between the two lowest 1Σ+ states of LiF in order to demonstrate the efficiency of the quantum chemistry version of the density-matrix renormalization group method (QC-DMRG). We show that QC-DMRG is capable of calculating the ground and several low-lying excited state energies within the error margin set up in advance of the calculation, while with standard quantum chemical methods it is difficult to obtain a good approximation to full configuration-interaction property values at the point of the avoided crossing. We have calculated the dipole moment as a function of bond length, which in fact provides a smooth and continuous curve even close to the avoided crossing, in contrast to other standard numerical treatments.
Physical Review A | 2011
Gergely Barcza; Örs Legeza; Konrad H. Marti; Markus Reiher
We have studied transition metal clusters from a quantum information theory perspective using the density-matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and interaction localization and discuss the application of the configuration interaction-based dynamically extended active space procedure, which significantly reduces the effective system size and accelerates the speed of convergence for complicated molecular electronic structures. Our results indicate the importance of taking entanglement among molecular orbitals into account in order to devise an optimal DMRG orbital ordering and carry out efficient calculations on transition metal clusters. Apart from these algorithmic observations, which lead to a recipe for black-box DMRG calculations, our work provides physical understanding of electron correlation in molecular and cluster structures in terms of entropy measures of relevance also to recent work on tensor-network representations of electronic states. We also identify those molecular orbitals which are highly entangled and discuss the consequences for chemical bonding and for the structural transition from an dioxygen binding copper cluster to an bis-oxygen-bridged system with broken O-O bond.
International Journal of Quantum Chemistry | 2015
Szilárd Szalay; Max Pfeffer; Valentin Murg; Gergely Barcza; Frank Verstraete; Reinhold Schneider; Örs Legeza
The treatment of high-dimensional problems such as the Schrodinger equation can be approached by concepts of tensor product approximation. We present general techniques that can be used for the treatment of high-dimensional optimization tasks and time-dependent equations, and connect them to concepts already used in many-body quantum physics. Based on achievements from the past decade, entanglement-based methods—developed from different perspectives for different purposes in distinct communities already matured to provide a variety of tools—can be combined to attack highly challenging problems in quantum chemistry. The aim of the present paper is to give a pedagogical introduction to the theoretical background of this novel field and demonstrate the underlying benefits through numerical applications on a text book example. Among the various optimization tasks, we will discuss only those which are connected to a controlled manipulation of the entanglement which is in fact the key ingredient of the methods considered in the paper. The selected topics will be covered according to a series of lectures given on the topic “New wavefunction methods and entanglement optimizations in quantum chemistry” at the Workshop on Theoretical Chemistry, February 18–21, 2014, Mariapfarr, Austria.
Physical Review B | 2010
Valentin Murg; Frank Verstraete; Örs Legeza; R. M. Noack
We present a tree-tensor-network-based method to study strongly correlated systems with nonlocal interactions in higher dimensions. Although the momentum-space and quantum-chemistry versions of the density-matrix renormalization group (DMRG) method have long been applied to such systems, the spatial topology of DMRG-based methods allows efficient optimizations to be carried out with respect to one spatial dimension only. Extending the matrix-product-state picture, we formulate a more general approach by allowing the local sites to be coupled to more than two neighboring auxiliary subspaces. Following [Y. Shi, L. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006)], we treat a treelike network ansatz with arbitrary coordination number z, where the z=2 case corresponds to the one-dimensional (1D) scheme. For this ansatz, the long-range correlation deviates from the mean-field value polynomially with distance, in contrast to the matrix-product ansatz, which deviates exponentially. The computational cost of the tree-tensor-network method is significantly smaller than that of previous DMRG-based attempts, which renormalize several blocks into a single block. In addition, we investigate the effect of unitary transformations on the local basis states and present a method for optimizing such transformations. For the 1D interacting spinless fermion model, the optimized transformation interpolates smoothly between real space and momentum space. Calculations carried out on small quantum chemical systems support our approach.
Journal of Chemical Theory and Computation | 2013
Katharina Boguslawski; Paweł Tecmer; Gergely Barcza; Örs Legeza; Markus Reiher
The accurate calculation of the (differential) correlation energy is central to the quantum chemical description of bond-formation and bond-dissociation processes. In order to estimate the quality of single- and multireference approaches for this purpose, various diagnostic tools have been developed. In this work, we elaborate on our previous observation [J. Phys. Chem. Lett.2012, 3, 3129] that one- and two-orbital-based entanglement measures provide quantitative means for the assessment and classification of electron correlation effects among molecular orbitals. The dissociation behavior of some prototypical diatomic molecules features all types of correlation effects relevant for chemical bonding. We demonstrate that our entanglement analysis is convenient to dissect these electron correlation effects and to provide a conceptual understanding of bond-forming and bond-breaking processes from the point of view of quantum information theory.
Journal of Chemical Theory and Computation | 2012
Katharina Boguslawski; Konrad H. Marti; Örs Legeza; Markus Reiher
We present an approach for the calculation of spin density distributions for molecules that require very large active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution, we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys.2011, 134, 224101] to build an accurate complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin density matrix elements can then also be determined as an expectation value employing the reconstructed wave function expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients, and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for standard approaches [J. Chem. Theory Comput.2011, 7, 2740].
Physical Review B | 1996
Örs Legeza; Gábor Fáth
Whites density-matrix renormalization-group (DMRG) method has been applied to the one-dimensional Ising model in a transverse field (ITF), in order to study the accuracy of the numerical algorithm. Due to the exact solubility of the ITF for any finite chain length, the errors introduced by the basis truncation procedure could have been directly analyzed. By computing different properties, like the energies of the low-lying levels or the ground-state one- and two-point correlation functions, we obtained a detailed picture of how these errors behave as functions of the various model and algorithm parameters. Our experience with the ITF contributes to a better understanding of the DMRG method, and may facilitate its optimization in other applications.
Journal of Chemical Physics | 2014
Stefan Knecht; Örs Legeza; Markus Reiher
We present the first implementation of the relativistic quantum chemical two- and four-component density matrix renormalization group algorithm that includes a variational description of scalar-relativistic effects and spin-orbit coupling. Numerical results based on the four-component Dirac-Coulomb Hamiltonian are presented for the standard reference molecule for correlated relativistic benchmarks: thallium hydride.