Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ortal Haik is active.

Publication


Featured researches published by Ortal Haik.


Langmuir | 2012

Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes

Vinodkumar Etacheri; Ortal Haik; Yossi Goffer; Gregory A. Roberts; Ionel C. Stefan; Rainier Fasching; Doron Aurbach

The effect of FEC as a co-solvent on the electrochemical performance and surface chemistry of silicon nanowire (SiNW) anodes was thoroughly investigated. Enhanced electrochemical performance was observed for SiNW anodes in alkyl carbonates electrolyte solutions containing fluoroethylene carbonate (FEC). Reduced irreversible capacity losses accompanied by enhanced and stable reversible capacities over prolonged cycling were achieved with FEC-containing electrolyte solutions. TEM studies provided evidence for the complete and incomplete lithiation of SiNWs in FEC-containing and FEC-free electrolyte solutions, respectively. Scanning electron microscopy (SEM) results proved the formation of much thinner and compact surface films on SiNWs in FEC-containing solutions. However, thicker surface films were identified for SiNW electrodes cycled in FEC-free solutions. SiNW electrodes develop lower impedance in electrolyte solutions containing FEC in contrast to standard (FEC-free) solutions. The surface chemistry of SiNW electrodes cycled in FEC-modified and standard electrolytes were investigated using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The impact of FEC as a co-solvent on the electrochemical behavior of SiNW electrodes is discussed herein in light of the spectroscopic and microscopic studies.


Journal of The Electrochemical Society | 2009

LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries

Surendra K. Martha; Boris Markovsky; Judith Grinblat; Yossi Gofer; Ortal Haik; Ella Zinigrad; Doron Aurbach; Thierry Drezen; Deyu Wang; Gianluca Deghenghi; Ivan Exnar

LiMnPO4 nanoparticles synthesized by the polyol method were examined as a cathode material for advanced Li-ion batteries. The structure, surface morphology, and performance were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, Raman, Fourier transform IR, and photoelectron spectroscopies, and standard electrochemical techniques. A stable reversible capacity up to 145 mAh g(-1) could be measured at discharge potentials > 4 V vs Li/Li+, with a reasonable capacity retention during prolonged charge/discharge cycling. The rate capability of the LiMnPO4 electrodes studied herein was higher than that of LiNi0.5Mn0.5O2 and LiNi0.8Co0.15Al0.05O2 (NCA) in similar experiments and measurements. The active mass studied herein seems to be the least surface reactive in alkyl carbonate/LiPF6 solutions. We attribute the low surface activity of this material, compared to the lithiated transition-metal oxides that are examined and used as cathode materials for Li-ion batteries, to the relatively low basicity and nucleophilicity of the oxygen atoms in the olivine compounds. The thermal stability of the LiMnPO4 material in solutions (measured by differential scanning calorimetry) is much higher compared to that of transition-metal oxide cathodes. This is demonstrated herein by a comparison with NCA electrodes


Angewandte Chemie | 2009

LiMn0.8Fe0.2PO4: An Advanced Cathode Material for Rechargeable Lithium Batteries†

Surendra K. Martha; Judith Grinblat; Ortal Haik; Ella Zinigrad; Thierry Drezen; James H. Miners; Ivan Exnar; Andreas Kay; Boris Markovsky; Doron Aurbach

Keywords: cathode materials ; lithium batteries ; nanoparticles ; surface chemistry ; thermal stability ; Performance ; Electrodes Reference EPFL-ARTICLE-159236doi:10.1002/anie.200903587View record in Web of Science Record created on 2010-11-30, modified on 2017-05-12


Journal of The Electrochemical Society | 2010

Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries

Rotem Marom; Ortal Haik; Doron Aurbach; Ion C. Halalay

In this work, LiClO 4 was revisited and explored as a possible electrolyte in Li-ion batteries. LiClO 4 and LiPF 6 solutions in alkyl carbonate solvent mixtures were compared in several aspects: electrochemical windows with noble metal and aluminum electrodes, anodic stability, surface chemistry developed on negative electrodes (Li, Li-graphite, Li-Si), the electrochemical behavior of graphite anodes and LiMn 1/3 Ni 1/3 Co 1/3 O 2 cathodes, and thermal behavior (solutions alone and mixtures of solutions and electrode materials). The anodic stability and the aluminum passivation are much better in LiPF 6 solutions than in LiClO 4 solutions. However, HF contamination in the former solutions worsens the passivation of negative electrodes due to reactions with surface ROCO 2 Li and ROLi species. Thermal reactions of LiClO 4 produce more specific heat than LiPF 6 solutions. However, in terms of onset temperatures for thermal runaway, the two electrolytes are equivalent. In conclusion, LiClO 4 is still an electrolyte that may be considered for use in lithium-ion batteries.


Journal of The Electrochemical Society | 2009

On the Performance of LiNi1 / 3Mn1 / 3Co1 / 3O2 Nanoparticles as a Cathode Material for Lithium-Ion Batteries

Hadar Sclar; Daniela Kovacheva; E. Zhecheva; R. Stoyanova; Ronit Lavi; Giora Kimmel; Judith Grinblat; Olga Girshevitz; Francis Amalraj; Ortal Haik; Ella Zinigrad; Boris Markovsky; Doron Aurbach

We report on the behavior of nanometric LiMn 1/3 Ni 1/3 CO 1/3 O 2 (LiMNC) as a cathode material for Li-ion batteries in comparison with the same material with submicrometric particles. The LiMNC material was produced by a self-combustion reaction, and the particle size was controlled by the temperature and duration of the follow-up calcination step. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman spectroscopy, electron paramagnetic resonance, inductively coupled plasma, and atomic force microscopy were used in conjunction with standard electrochemical techniques (cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy) for characterizing the electrode materials. The effect of cycling and aging at 60°C was also explored. Nanomaterials are much more reactive in standard electrolyte solutions than LiMNC with a submicrometric particle. They develop surface films that impede their electrochemical response, while their bulk structure remains stable during aging and cycling at elevated temperatures. The use of nanomaterials in Li-ion batteries is discussed.


Journal of The Electrochemical Society | 2010

On the Surface Chemistry of LiMO2 Cathode Materials (M = [ MnNi ] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies

Ortal Haik; Nicole Leifer; Zvi Samuk-Fromovich; Ella Zinigrad; Boris Markovsky; Liraz Larush; Yossi Goffer; Gil Goobes; Doron Aurbach

This study examined the aging mechanisms of layered cathode materials for lithium batteries upon exposure to air and the influence of this aging on the thermal stability and electrochemical performance of these materials composed of solid solutions of LiMO 2 (M = [MnNi] or [MnNiCo]) in Li cells. A unique methodology for the quantitative characterization of surface carbonates on LiMO 2 compounds based on differential scanning calorimeter (DSC) measurements was developed. Correlations were made between the formation of Li 2 CO 3 and other carbonates on the surface of the lithiated metal oxide powders and the changes in the structure and electrochemical performance of the cathode materials. The techniques used included solid-state NMR, X-ray photelectron spectroscopy, Fourier transform IR, high resolution scanning electron microscopy, high resolution transmission electron microscopy and the thermal analysis, DSC, and accelerating rate calorimetry in conjunction with electrochemical measurements. .


Journal of The Electrochemical Society | 2011

On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries

Surendra K. Martha; Ortal Haik; Ella Zinigrad; Ivan Exnar; Thierry Drezen; James H. Miners; Doron Aurbach

The thermal stability of pristine and electrochemically delithiated LiMPO4 (Carbon coated-LiMnPO4, Carbon coated-LiMn0.8Fe0.2PO4, and Carbon coated-LiFePO4), LiCoO2 and LiNi0.8Co0.15Al0.05O2 (NCA) composite electrodes with LiPF6 solutions in ethylene carbonate (EC)/dimethyl carbonate (DMC) and EC/propylene carbonate (PC), was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry. The thermal reactions products were measured by XRD and electron microscopy. The LiFePO4 and LiMnPO4 cathode materials were found to have comparable thermal stability in their pristine and fully delithiated states. The onset temperatures of the thermal reactions are lower in EC/DMC than in EC/PC solutions but the specific heat evolution of all the thermal reactions are higher with EC-PC solutions. No evidence was found that delithiated LiMnPO4 or Li[MnFe]PO4 have lower thermal stability than delithiated LiFePO4. The thermal reactivity of the layered LiCoO2 and LiNi0.8Co0.15Al0.05O2 cathode materials was found to be comparable to that of the LiMPO4 materials. Oxygen release was detected from the layered compounds upon their heating around 200°C.


Journal of Materials Chemistry | 2016

Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2

Florian Schipper; Mudit Dixit; Daniela Kovacheva; Michael Talianker; Ortal Haik; Judith Grinblat; Evan M. Erickson; Chandan Ghanty; Dan Thomas Major; Boris Markovsky; Doron Aurbach

Ni-rich layered lithiated transition metal oxides Li[NixCoyMnz]O2 (x + y + z = 1) are the most promising materials for positive electrodes for advanced Li-ion batteries. However, one of the drawbacks of these materials is their low intrinsic stability during prolonged cycling. In this work, we present lattice doping as a strategy to improve the structural stability and voltage fade on prolonged cycling of LiNi0.6Co0.2Mn0.2O2 (NCM-622) doped with zirconium (+4). It was found that LiNi0.56Zr0.04Co0.2Mn0.2O2 is stable upon galvanostatic cycling, in contrast to the undoped material, which undergoes partial structural layered-to-spinel transformation during cycling. The current study provides sub-nanoscale insight into the role of Zr4+ doping on such a transformation in Ni-rich Li[NixCoyMnz]O2 materials by adopting a combined experimental and first-principles theory approach. A possible mechanism for a Ni-mediated layered-to-spinel transformation in Ni-rich NCMs is also proposed.


Journal of The Electrochemical Society | 2011

Li4Ti5O12/LiMnPO4 Lithium-Ion Battery Systems for Load Leveling Application

Surendra K. Martha; Ortal Haik; Valentina Borgel; Ella Zinigrad; Ivan Exnar; Thierry Drezen; James H. Miners; Doron Aurbach

A new type of lithium-ion cell based on the combination of spinel Li4Ti5O12 anode with a high voltage olivine LiMnPO4 cathode, which can be promising for load leveling applications, is demonstrated for the first time. The power and safety characteristics of this battery system were found to meet the requirement for this application. The structure, surface morphology, and the performance were characterized by X-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and standard electrochemical techniques. A stable reversible capacity up to 125 mAh g � 1 of the cathode in full cell could be measured at discharge potentials >2.5 V with a reasonable capacity retention during prolonged charge/discharge cycling. The thermal stability of pristine and electrochemically delithiated LiMnPO4-Li4Ti5O12 composite cathodes and anodes in contact with the electrolyte solution was investigated by differential scanning calorimetry (DSC). The electrodes were also studied by thermogravimetric analysis, coupled with mass spectrometry. We did not found appreciable changes in the thermal stability of the electrodes in their pristine and charged states, in contact with LiPF6 solution in mixtures of ethylene carbonate (EC) and dimethyl carbonate (DMC).


Journal of Materials Chemistry | 2015

Improved capacity and stability of integrated Li and Mn rich layered-spinel Li1.17Ni0.25Mn1.08O3 cathodes for Li-ion batteries

Prasant Kumar Nayak; Judith Grinblat; Mikhael D. Levi; Ortal Haik; Elena Levi; Yang-Kook Sun; N. Munichandraiah; Doron Aurbach

A Li-rich layered-spinel material with a target composition Li1.17Ni0.25Mn1.08O3 (xLi[Li1/3Mn2/3]O2.(1 − x)LiNi0.5Mn1.5O4, (x = 0.5)) was synthesized by a self-combustion reaction (SCR), characterized by XRD, SEM, TEM, Raman spectroscopy and was studied as a cathode material for Li-ion batteries. The Rietveld refinement results indicated the presence of monoclinic (Li[Li1/3Mn2/3]O2) (52%), spinel (LiNi0.5Mn1.5O4) (39%) and rhombohedral LiNiO2 (9%). The electrochemical performance of this Li-rich integrated cathode material was tested at 30 °C and compared to that of high voltage LiNi0.5Mn1.5O4 spinel cathodes. Interestingly, the layered-spinel integrated cathode material exhibits a high specific capacity of about 200 mA h g−1 at C/10 rate as compared to 180 mA h g−1 for LiNi0.5Mn1.5O4 in the potential range of 2.4–4.9 V vs. Li anodes in half cells. The layered-spinel integrated cathodes exhibited 92% capacity retention as compared to 82% for LiNi0.5Mn1.5O4 spinel after 80 cycles at 30 °C. Also, the integrated cathode material can exhibit 105 mA h g−1 at 2 C rate as compared to 78 mA h g−1 for LiNi0.5Mn1.5O4. Thus, the presence of the monoclinic phase in the composite structure helps to stabilize the spinel structure when high specific capacity is required and the electrodes have to work within a wide potential window. Consequently, the Li1.17Ni0.25Mn1.08O3 composite material described herein can be considered as a promising cathode material for Li ion batteries.

Collaboration


Dive into the Ortal Haik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Talianker

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Exnar

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge