Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Orzenil Bonfim Silva-Junior is active.

Publication


Featured researches published by Orzenil Bonfim Silva-Junior.


Nature | 2014

The genome of Eucalyptus grandis

Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye

Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


BMC Plant Biology | 2011

High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species.

Dario Grattapaglia; Orzenil Bonfim Silva-Junior; Matias Kirst; Bruno Marco de Lima; Danielle A. Faria; Georgios Pappas

BackgroundHigh-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera.ResultsWe have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species.SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased.ConclusionsThis study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across multiple Eucalyptus species is feasible, although strongly dependent on having a representative and sufficiently deep collection of sequences from many individuals of each target species. A higher density SNP platform will be instrumental to undertake genome-wide phylogenetic and population genomics studies and to implement molecular breeding by Genomic Selection in Eucalyptus.


PLOS ONE | 2013

Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

Alexandre Augusto Pereira Firmino; Fernando Fonseca; Leonardo Lima Pepino de Macedo; Roberta Ramos Coelho; José Dijair Antonino de Souza; Roberto C. Togawa; Orzenil Bonfim Silva-Junior; Georgios Joannis Pappas-Jr; Maria Cristina Mattar da Silva; Gilbert Engler; Maria Fatima Grossi-de-Sa

Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.


New Phytologist | 2015

Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis.

Orzenil Bonfim Silva-Junior; Dario Grattapaglia

We used high-density single nucleotide polymorphism (SNP) data and whole-genome pooled resequencing to examine the landscape of population recombination (ρ) and nucleotide diversity (ϴw ), assess the extent of linkage disequilibrium (r(2) ) and build the highest density linkage maps for Eucalyptus. At the genome-wide level, linkage disequilibrium (LD) decayed within c. 4-6 kb, slower than previously reported from candidate gene studies, but showing considerable variation from absence to complete LD up to 50 kb. A sharp decrease in the estimate of ρ was seen when going from short to genome-wide inter-SNP distances, highlighting the dependence of this parameter on the scale of observation adopted. Recombination was correlated with nucleotide diversity, gene density and distance from the centromere, with hotspots of recombination enriched for genes involved in chemical reactions and pathways of the normal metabolic processes. The high nucleotide diversity (ϴw = 0.022) of E. grandis revealed that mutation is more important than recombination in shaping its genomic diversity (ρ/ϴw = 0.645). Chromosome-wide ancestral recombination graphs allowed us to date the split of E. grandis (1.7-4.8 million yr ago) and identify a scenario for the recent demographic history of the species. Our results have considerable practical importance to Genome Wide Association Studies (GWAS), while indicating bright prospects for genomic prediction of complex phenotypes in eucalypt breeding.


Molecular Ecology Resources | 2015

A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence

Dario Grattapaglia; Eva Mc Mamani; Orzenil Bonfim Silva-Junior; Danielle A. Faria

Keystone species in their native ranges, eucalypts, are ecologically and genetically very diverse, growing naturally along extensive latitudinal and altitudinal ranges and variable environments. Besides their ecological importance, eucalypts are also the most widely planted trees for sustainable forestry in the world. We report the development of a novel collection of 535 microsatellites for species of Eucalyptus, 494 designed from ESTs and 41 from genomic libraries. A selected subset of 223 was evaluated for individual identification, parentage testing, and ancestral information content in the two most extensively studied species, Eucalyptus grandis and Eucalyptus globulus. Microsatellites showed high transferability and overlapping allele size range, suggesting they have arisen still in their common ancestor and confirming the extensive genome conservation between these two species. A consensus linkage map with 437 microsatellites, the most comprehensive microsatellite‐only genetic map for Eucalyptus, was built by assembling segregation data from three mapping populations and anchored to the Eucalyptus genome. An overall colinearity between recombination‐based and physical positioning of 84% of the mapped microsatellites was observed, with some ordering discrepancies and sporadic locus duplications, consistent with the recently described whole genome duplication events in Eucalyptus. The linkage map covered 95.2% of the 605.8‐Mbp assembled genome sequence, placing one microsatellite every 1.55 Mbp on average, and an overall estimate of physical to recombination distance of 618 kbp/cM. The genetic parameters estimates together with linkage and physical position data for this large set of microsatellites should assist marker choice for genome‐wide population genetics and comparative mapping in Eucalyptus.


BMC Proceedings | 2011

Genome-wide SNP discovery from a pooled sample of accessions of the biofuel plant Jatropha curcas based on whole-transcriptome Illumina resequencing

Orzenil Bonfim Silva-Junior; Tatiana Barbosa Rosado; Bruno Galvêas Laviola; Marilia R. Pappas; Georgios J Pappas; Dario Grattapaglia

Background Jatropha curcas(JC) is an oil-rich, drought-tolerant perennial shrub of the Euphorbiaceae family widely dispersed throughout the world. Thought to be native to Central America, it has been the object of an increasing number of studies in recent years for it exhibits a number of appealing attributes as a promising source of biodiesel. Although its undomesticated nature and preferential outcrossed mating system would suggest a high degree of genetic variation to be exploited in breeding, studies have shown limited genetic diversity in the existing germplasm collections [1]. In spite of the increased interest in this bioenergy plant, challenges still exist to turn this species into a genuine crop and improved varieties that consolidate desirable traits are not yet available, making JC large scale plantation an uncertain business [2]. Genomic studies to potentially assist JC breeding efforts have started in the last few years. JC is diploid (2n=22), with a haploid genome size estimated at 416 Mbp [3]. EST databases focusing on gene discovery were constructed [4]and a draft genome sequence was recently published covering 285 Mbp (~68%) of the genome in 120,586 contigs with 40,929 predicted gene models [5]. The focus of our work with JC is to provide effective tools to accelerate breeding through Genomic Selection (GS) [6] and to help assess the levels, organization and enrichment strategies of genetic diversity in germplasm banks and breeding populations. To this end we have started the development of SNP markers. Available EST databases built from single individual plants do not provide the necessary sequence diversity for SNP discovery.In this work we report on the discovery of a set of SNPs for JC derived from a pool of genetically diverse accessions using Illumina sequencing and a SNP selection pipeline recently described [7].


PLOS ONE | 2015

Parentage Reconstruction in Eucalyptus nitens Using SNPs and Microsatellite Markers: A Comparative Analysis of Marker Data Power and Robustness.

Emily Telfer; Grahame T. Stovold; Yongjun Li; Orzenil Bonfim Silva-Junior; Dario Grattapaglia; Heidi Dungey

Pedigree reconstruction using molecular markers enables efficient management of inbreeding in open-pollinated breeding strategies, replacing expensive and time-consuming controlled pollination. This is particularly useful in preferentially outcrossed, insect pollinated Eucalypts known to suffer considerable inbreeding depression from related matings. A single nucleotide polymorphism (SNP) marker panel consisting of 106 markers was selected for pedigree reconstruction from the recently developed high-density Eucalyptus Infinium SNP chip (EuCHIP60K). The performance of this SNP panel for pedigree reconstruction in open-pollinated progenies of two Eucalyptus nitens seed orchards was compared with that of two microsatellite panels with 13 and 16 markers respectively. The SNP marker panel out-performed one of the microsatellite panels in the resolution power to reconstruct pedigrees and out-performed both panels with respect to data quality. Parentage of all but one offspring in each clonal seed orchard was correctly matched to the expected seed parent using the SNP marker panel, whereas parentage assignment to less than a third of the expected seed parents were supported using the 13-microsatellite panel. The 16-microsatellite panel supported all but one of the recorded seed parents, one better than the SNP panel, although there was still a considerable level of missing and inconsistent data. SNP marker data was considerably superior to microsatellite data in accuracy, reproducibility and robustness. Although microsatellites and SNPs data provide equivalent resolution for pedigree reconstruction, microsatellite analysis requires more time and experience to deal with the uncertainties of allele calling and faces challenges for data transferability across labs and over time. While microsatellite analysis will continue to be useful for some breeding tasks due to the high information content, existing infrastructure and low operating costs, the multi-species SNP resource available with the EuCHIP60k, opens a whole new array of opportunities for high-throughput, genome-wide or targeted genotyping in species of Eucalyptus.


New Phytologist | 2017

Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus

Rafael Tassinari Resende; Marcos Deon Vilela de Resende; Fabyano Fonseca e Silva; Camila Ferreira Azevedo; Elizabete Keiko Takahashi; Orzenil Bonfim Silva-Junior; Dario Grattapaglia

Although genome-wide association studies (GWAS) have provided valuable insights into the decoding of the relationships between sequence variation and complex phenotypes, they have explained little heritability. Regional heritability mapping (RHM) provides heritability estimates for genomic segments containing both common and rare allelic effects that individually contribute too little variance to be detected by GWAS. We carried out GWAS and RHM for seven growth, wood and disease resistance traits in a breeding population of 768 Eucalyptus hybrid trees using EuCHIP60K. Total genomic heritabilities accounted for large proportions (64-89%) of pedigree-based trait heritabilities, providing additional evidence that complex traits in eucalypts are controlled by many sequence variants across the frequency spectrum, each with small contributions to the phenotypic variance. RHM detected 26 quantitative trait loci (QTLs) encompassing 2191 single nucleotide polymorphisms (SNPs), whereas GWAS detected 13 single SNP-trait associations. RHM and GWAS QTLs individually explained 5-15% and 4-6% of the genomic heritability, respectively. RHM was superior to GWAS in capturing larger proportions of genomic heritability. Equated to previously mapped QTLs, our results highlighted genomic regions for further examination towards gene discovery. RHM-QTLs bearing a combination of common and rare variants could be useful enhancements to incorporate prior knowledge of the underlying genetic architecture in genomic prediction models.


Heredity | 2017

Assessing the expected response to genomic selection of individuals and families in Eucalyptus breeding with an additive-dominant model

R T Resende; M D V Resende; Fabyano Fonseca e Silva; C F Azevedo; E K Takahashi; Orzenil Bonfim Silva-Junior; Dario Grattapaglia

We report a genomic selection (GS) study of growth and wood quality traits in an outbred F2 hybrid Eucalyptus population (n=768) using high-density single-nucleotide polymorphism (SNP) genotyping. Going beyond previous reports in forest trees, models were developed for different selection targets, namely, families, individuals within families and individuals across the entire population using a genomic model including dominance. To provide a more breeder-intelligible assessment of the performance of GS we calculated the expected response as the percentage gain over the population average expected genetic value (EGV) for different proportions of genomically selected individuals, using a rigorous cross-validation (CV) scheme that removed relatedness between training and validation sets. Predictive abilities (PAs) were 0.40–0.57 for individual selection and 0.56–0.75 for family selection. PAs under an additive+dominance model improved predictions by 5 to 14% for growth depending on the selection target, but no improvement was seen for wood traits. The good performance of GS with no relatedness in CV suggested that our average SNP density (~25 kb) captured some short-range linkage disequilibrium. Truncation GS successfully selected individuals with an average EGV significantly higher than the population average. Response to GS on a per year basis was ~100% more efficient than by phenotypic selection and more so with higher selection intensities. These results contribute further experimental data supporting the positive prospects of GS in forest trees. Because generation times are long, traits are complex and costs of DNA genotyping are plummeting, genomic prediction has good perspectives of adoption in tree breeding practice.


PLOS ONE | 2015

Sugarcane Giant Borer Transcriptome Analysis and Identification of Genes Related to Digestion

Fernando Fonseca; Alexandre Augusto Pereira Firmino; Leonardo Lima Pepino de Macedo; Roberta Ramos Coelho; José Dijair Antonino de Sousa Júnior; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Georgios Joannis Pappas; Luiz Avelar Brandão de Góis; Maria Cristina Mattar da Silva; Maria Fatima Grossi-de-Sa

Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect’s biology and to guide the development of new strategies for insect-pest control.

Collaboration


Dive into the Orzenil Bonfim Silva-Junior's collaboration.

Top Co-Authors

Avatar

Dario Grattapaglia

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Danielle A. Faria

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Roberto C. Togawa

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Georgios Pappas

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Alexandre Augusto Pereira Firmino

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Eva Mc Mamani

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Evandro Novaes

Universidade Federal de Lavras

View shared research outputs
Top Co-Authors

Avatar

Fabyano Fonseca e Silva

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge