Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osama A. A. Ahmed is active.

Publication


Featured researches published by Osama A. A. Ahmed.


Journal of Pharmaceutical Sciences | 2014

Design and Optimization of Self-Nanoemulsifying Delivery System to Enhance Quercetin Hepatoprotective Activity in Paracetamol-Induced Hepatotoxicity

Osama A. A. Ahmed; Shaimaa M. Badr-Eldin; Mona K. Tawfik; Tarek A. Ahmed; Khalid M. El-Say; Jihan M. Badr

The present study aimed to develop optimized quercetin (QT)-loaded self-nanoemulsifying drug delivery system (SNEDDS) that offers protective effect against liver damage. Solubility study of QT in different oils, surfactants, and cosurfactants was performed. Ternary phase mixtures of the selected components were constructed to select a suitable range for each component. Experimental mixture design was utilized to optimize SNEDDSs that possess smaller globule size with enhanced emulsification and dissolution rates. QT SNEDDS was compared with QT suspension control and silymarin. In vivo evaluation and histopatholgical study of the selected QT SNEDDSs were achieved after administration of paracetamol over dosage to albino rats. Two optimized formulations were selected; one based on Sefsol and the other based on linoleic acid as an oily phase, Tween(®) 80 and polyethylene glycol 400 as surfactant and cosurfactant, respectively. Both Sefsol and linoleic-acid-optimized SNEDDS formulation showed no symptoms associated with toxicity and offered protective effect against paracetamol-induced hepatotoxicity by scavenging free radicals, attenuating lipid peroxidation, and enhancing the activity of antioxidants. The histopatholgical observations revealed that the inflammatory infiltrations induced by paracetamol were significantly ameliorated.


Expert Opinion on Drug Delivery | 2014

Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches.

Osama A. A. Ahmed; Mohsen I. Afouna; Khalid M. El-Say; Ashraf B. Abdel-Naim; Alaa Khedr; Zainy M. Banjar

Objectives: To optimize and use of glimepiride (GMD)-loaded self-nanoemulsifying delivery systems (SNEDs) for the preparation of transdermal patches. Methods: Mixture design was utilized to optimize GMD-loaded SNEDs in acidic and aqueous pH media. Optimized GMD-loaded SNEDs were used in the preparation of chitosan (acidic) and hydroxypropyl methyl cellulose (HPMC) (aqueous) films. The prepared optimized formulations were investigated for ex vivo skin permeation, for in vivo hypoglycemic activity and for their pharmacokinetic parameters using animal model. Results: The optimized formulations showed flux value of (2.88 and 4.428 μg/cm2/h) through rat skin for chitosan and HPMC films, respectively. The pattern of GMD release from both formulations was in favor of Higuchi and approaching zero order models. The n values for Korsmeyer–Peppas equation were characteristic of anomalous (non-Fickian) release mechanism. Moreover, HPMC patches have shown significant reductions (p < 0.05) in blood glucose levels; (213.33 ± 15.19) mg/100 ml from the base-line measurement after 12 h of application. Conclusions: Optimized GMD SNEDs patches were found to improve GMD skin permeability and the essential pharmacokinetic parameters. Further extensive pre/clinical studies are necessary prior to use transdermal GMD as a valuable alternative to peroral dosage forms with improved bioavailability, longer duration of action and more patient convenience.


Pharmaceutical Development and Technology | 2015

Enhanced permeation parameters of optimized nanostructured simvastatin transdermal films: ex vivo and in vivo evaluation.

Khalid M. El-Say; Tarek A. Ahmed; Shaimaa M. Badr-Eldin; Usama A. Fahmy; Hibah Aldawsari; Osama A. A. Ahmed

Abstract Objective: Detailed optimization process was carried out to enhance permeation parameters, and hence bioavailability, of simvastatin (SMV) transdermal films. Methods: SMV solubility was investigated in various oils, surfactants and co-surfactants/co-solvents. Mixtures of the selected components were prepared to identify zone of nanoemulsion formation that was utilized in Extreme Vertices mixture design to develop SMV self-nanoemulsifying drug delivery systems (SNEDDS) with minimum globule size. Optimized SMV-SNEDDS were included in the preparation of transdermal films. A fractional factorial design was implemented to evaluate effects of the factors on the amount of SMV permeated. The optimized film was investigated for ex vivo skin permeation and in vivo pharmacokinetic parameters. Results: The optimum SNEDDS formula was 0.09, 0.8 and 0.11 for Sefsol 218, tween 80 and PEG 200, respectively. Fractional factorial design depicted the optimized SMV transdermal film with 2% HPMC and 2% DMSO as permeation enhancer that showed 1.82-fold improvements in skin flux. The pharmacokinetic data showed higher Cmax and almost doubled AUC compared with raw SMV-loaded films. Conclusion: The two-step optimization implemented to optimize and control the experimental conditions for the preparation of SMV-SNEDDS-transdermal film with improved ex vivo skin permeation and enhanced in vivo parameters.


Drug Design Development and Therapy | 2015

Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

Osama A. A. Ahmed; Khaled M. Hosny; Majid M Al-Sawahli; Usama A. Fahmy

The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.


International Journal of Nanomedicine | 2015

Optimized zein nanospheres for improved oral bioavailability of atorvastatin

Fahima M. Hashem; Majid M Al-Sawahli; Mohamed Nasr; Osama A. A. Ahmed

Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability.


Pharmaceutical Development and Technology | 2015

Statistical optimization of controlled release microspheres containing cetirizine hydrochloride as a model for water soluble drugs

Khalid M. El-Say; Abdel-Rahim M El-Helw; Osama A. A. Ahmed; Khaled M. Hosny; Tarek A. Ahmed; Rasha M. Kharshoum; Usama A. Fahmy; Majed Alsawahli

Abstract The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 33 Box–Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12 h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348 µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12 h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0–∞ value of 3309 ± 211 ng h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.


Journal of Liposome Research | 2016

Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies

Mallesh Kurakula; Osama A. A. Ahmed; Usama A. Fahmy; Tarek A. Ahmed

Abstract Context: Avanafil (AVA) is used in the treatment of erectile dysfunction, but is reported for its poor aqueous solubility. Solid lipid nanoparticles (SLNs) are lipid carriers that can greatly enhance drug solubility and bioavailability. Objective: This work was aimed to formulate and optimize AVA SLNs with subsequent loading into hydrogel films for AVA transdermal delivery. Materials and methods: AVA SLNs were prepared utilizing homogenization followed by ultra-sonication technique. The prepared SLNs were characterized for particle size, charge, surface morphology and drug content. The optimized SLNs formulation was incorporated into transdermal films prepared using HPMC and chitosan. Hydrogel films were evaluated for ex-vivo rat skin permeation using automated Franz diffusion cells. The permeation parameters and the release mechanism were evaluated. The transdermal permeation of the prepared AVA SLNs through the skin layers was studied using confocal laser scanning microscope. Results: Lipid concentration and % of oil in lipid had a pronounced effect on particle size while, entrapment efficiency was significantly affected by lipid concentration and % of cholesterol. The optimized AVA SLNs showed particle size and entrapment efficiency of 86 nm and 85.01%, respectively. TEM images revealed spherecity of the particles. High permeation parameters were observed from HPMC films loaded with AVA SLNs. The release data were in favor of Higuchi diffusion model. The prepared AVA SLNs were able to penetrate deeper in skin layers. Conclusion: HPMC transdermal film-loaded AVA SLNs is an effective and alternative to per-oral drug administration.


International Journal of Pharmaceutics | 2015

In-vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy

Amir Ibrahim Mohamed; Osama A. A. Ahmed; Suzan Amin; Omar Anwar Elkadi; Mohamed A. Kassem

The purpose of this study was to use near-infrared (NIR) transmission spectroscopic technique to determine clindamycin plasma concentration after oral administration of clindamycin loaded GMO-alginate microspheres using rabbits as animal models. Lyophilized clindamycin-plasma standard samples at a concentration range of 0.001-10 μg/ml were prepared and analyzed by NIR and HPLC as a reference method. NIR calibration model was developed with partial least square (PLS) regression analysis. Then, a single dose in-vivo evaluation was carried out and clindamycin-plasma concentration was estimated by NIR. Over 24 h time period, the pharmacokinetic parameters of clindamycin were calculated for the clindamycin loaded GMO-alginate microspheres (F3) and alginate microspheres (F2), and compared with the plain drug (F1). PLS calibration model with 7-principal components (PC), and 8000-9200 cm(-1) spectral range shows a good correlation between HPLC and NIR values with root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP), and calibration coefficient (R(2)) values of 0.245, 1.164, and 0.9753, respectively, which suggests that NIR transmission technique can be used for drug-plasma analysis without any extraction procedure. F3 microspheres exhibited controlled and prolonged absorption Tmax of 4.0 vs. 1.0 and 0.5 h; Cmax of 2.37±0.3 vs. 3.81±0.8 and 5.43±0.7 μg/ml for F2 and F1, respectively. These results suggest that the combination of GMO and alginate (1:4 w/w) could be successfully employed for once daily clindamycin microspheres formulation which confirmed by low Cmax and high Tmax values.


Drug Design Development and Therapy | 2015

Evaluation of combined famotidine with quercetin for the treatment of peptic ulcer: in vivo animal study.

Mohammed As Abourehab; Khaled A. Khaled; Hatem Aa Sarhan; Osama A. A. Ahmed

The aim of this work was to prepare a combined drug dosage form of famotidine (FAM) and quercetin (QRT) to augment treatment of gastric ulcer. FAM was prepared as freeze-dried floating alginate beads using ion gelation method and then coated with Eudragit RL100 to sustain FAM release. QRT was prepared as solid dispersion with polyvinyl pyrrolidone K30 to improve its solubility. Photo images and scanning electron microscope images of the prepared beads were carried out to detect floating behavior and to reveal surface and core shape of the prepared beads. Anti-ulcerogenic effect and histopathological examination of gastric tissues were carried out to investigate the effect of the combined drug formulation compared with commercial FAM tablets and FAM beads. Gastric glutathione (GSH), superoxide dismutase, catalase, tissue myeloperoxidase, and lipid peroxidation enzyme activities and levels in rat stomach tissues were also determined. Results revealed that spherical beads were formed with an average diameter of 1.64±0.33 mm. They floated immediately with no lag time before floating, and remained buoyant throughout the test period. Treatment with a combination of FAM beads plus QRT showed the absence of any signs of inflammation or hemorrhage, and significantly prevented the indomethacin-induced decrease in GSH levels (P<0.05) with regain of normal GSH gastric tissue levels. Also, there was a significant difference in the decrease of malondialdehyde level compared to FAM commercial tablets or beads alone (P<0.05). The combined formula significantly improved the myeloperoxidase level compared to both the disease control group and commercial FAM tablet-treated group (P<0.05). Formulation of FAM as floating beads in combination with solid dispersion of QRT improved the anti-ulcer activity compared to commercially available tablets, which reveals a promising application for treatment of peptic ulcer.


Drug Design Development and Therapy | 2015

Improved corneal bioavailability of ofloxacin: biodegradable microsphere-loaded ion-activated in situ gel delivery system

Elshaimaa G Sayed; Amal K. Hussein; Khaled A. Khaled; Osama A. A. Ahmed

The aim of the study was to improve corneal penetration and bioavailability of ofloxacin (OFX) eye preparations. OFX was incorporated in poly (lactide-co-glycolide) as biodegradable microspheres using oil in oil emulsion solvent evaporation technique. The prepared OFX microspheres were then incorporated in Gelrite® in situ gel preparation. In addition, OFX Gelrite-based in situ gel formulations were prepared. OFX formulations were characterized for gelling capacity, viscosity, and rheological properties. Release studies for OFX microspheres, OFX in situ gel, and OFX-loaded microspheres in situ gel formulations were carried out to investigate release characteristics of the drug. The prepared OFX formulations were then investigated in vivo compared with commercially available OFX eyedrops. Results showed that the optimum Gelrite concentration was at 0.4%–0.7% w/v; the prepared formulations were viscous liquid transformed into a pourable gel immediately after the addition of simulated tear fluid with a gelling factor of 27–35. Incorporation of OFX-loaded microspheres in Gelrite solution (0.4% w/v) significantly altered the release profiles of OFX-loaded microspheres in situ gel formula compared with the corresponding OFX gels and OFX microspheres. In vivo results in rabbits showed that OFX-loaded microspheres in situ gel formula improved the relative bioavailability by 11.7-fold compared with the commercially available OFX eyedrops. In addition, the longer duration of action of OFX-loaded microspheres in situ gel formula preparations is thought to avoid frequent instillations, which improves patient tolerability and compliance.

Collaboration


Dive into the Osama A. A. Ahmed's collaboration.

Top Co-Authors

Avatar

Tarek A. Ahmed

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Usama A. Fahmy

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Khaled M. Hosny

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hibah Aldawsari

King Abdulaziz University

View shared research outputs
Researchain Logo
Decentralizing Knowledge