Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osama A. Abulseoud is active.

Publication


Featured researches published by Osama A. Abulseoud.


Drug Testing and Analysis | 2017

Cannabinoid disposition in oral fluid after controlled smoked, vaporized, and oral cannabis administration

Madeleine J. Swortwood; Matthew N. Newmeyer; Maria Andersson; Osama A. Abulseoud; Karl B. Scheidweiler; Marilyn A. Huestis

Oral fluid (OF) is an important matrix for monitoring drugs. Smoking cannabis is common, but vaporization and edible consumption also are popular. OF pharmacokinetics are available for controlled smoked cannabis, but few data exist for vaporized and oral routes. Frequent and occasional cannabis smokers were recruited as participants for four dosing sessions including one active (6.9% Δ9 -tetrahydrocannabinol, THC) or placebo cannabis-containing brownie, followed by one active or placebo cigarette, or one active or placebo vaporized cannabis dose. Only one active dose was administered per session. OF was collected before and up to 54 (occasional) or 72 (frequent) h after dosing from cannabis smokers. THC, 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), tetrahydrocannabivarin (THCV), cannabidiol (CBD), and cannabigerol (CBG) were quantified by liquid chromatography-tandem mass spectrometry. OF cannabinoid Cmax occurred during or immediately after cannabis consumption due to oral mucosa contamination. Significantly greater THC Cmax and significantly later THCV, CBD, and CBG tlast were observed after smoked and vaporized cannabis compared to oral cannabis in frequent smokers only. No significant differences in THC, 11-OH-THC, THCV, CBD, or CBG tmax between routes were observed for either group. For occasional smokers, more 11-OH-THC and THCCOOH-positive specimens were observed after oral dosing than after inhaled routes, increasing % positive cannabinoid results and widening metabolite detection windows after oral cannabis consumption. Utilizing 0.3 µg/L THCV and CBG cut-offs resulted in detection windows indicative of recent cannabis intake. OF pharmacokinetics after high potency CBD cannabis are not yet available precluding its use currently as a marker of recent use. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.


Clinical Chemistry | 2017

Cannabis Edibles: Blood and Oral Fluid Cannabinoid Pharmacokinetics and Evaluation of Oral Fluid Screening Devices for Predicting Δ9-Tetrahydrocannabinol in Blood and Oral Fluid following Cannabis Brownie Administration

Matthew N. Newmeyer; Madeleine J. Swortwood; Maria Andersson; Osama A. Abulseoud; Karl B. Scheidweiler; Marilyn A. Huestis

BACKGROUND Roadside oral fluid (OF) Δ9-tetrahydrocannabinol (THC) detection indicates recent cannabis intake. OF and blood THC pharmacokinetic data are limited and there are no on-site OF screening performance evaluations after controlled edible cannabis. CONTENT We reviewed OF and blood cannabinoid pharmacokinetics and performance evaluations of the Draeger DrugTest®5000 (DT5000) and Alere™ DDS®2 (DDS2) on-site OF screening devices. We also present data from a controlled oral cannabis administration session. SUMMARY OF THC maximum concentrations (Cmax) were similar in frequent as compared to occasional smokers, while blood THC Cmax were higher in frequent [mean (range) 17.7 (8.0-36.1) μg/L] smokers compared to occasional [8.2 (3.2-14.3) μg/L] smokers. Minor cannabinoids Δ9-tetrahydrocannabivarin and cannabigerol were never detected in blood, and not in OF by 5 or 8 h, respectively, with 0.3 μg/L cutoffs. Recommended performance (analytical sensitivity, specificity, and efficiency) criteria for screening devices of ≥80% are difficult to meet when maximizing true positive (TP) results with confirmation cutoffs below the screening cutoff. TPs were greatest with OF confirmation cutoffs of THC ≥1 and ≥2 μg/L, but analytical sensitivities were <80% due to false negative tests arising from confirmation cutoffs below the DT5000 and DDS2 screening cutoffs; all criteria were >80% with an OF THC ≥5 μg/L cutoff. Performance criteria also were >80% with a blood THC ≥5 μg/L confirmation cutoff; however, positive OF screening results might not confirm due to the time required to collect blood after a crash or police stop. OF confirmation is recommended for roadside OF screening.ClinicalTrials.gov identification number: NCT02177513.


Journal of epilepsy research | 2016

Beta Lactams Antibiotic Ceftriaxone Modulates Seizures, Oxidative Stress and Connexin 43 Expression in Hippocampus of Pentylenetetrazole Kindled Rats

Abdelaziz M. Hussein; Mohammed Ghalwash; Khaled Magdy; Osama A. Abulseoud

Background and Purpose: This study aimed to investigate the effect of ceftriaxone on oxidative stress and gap junction protein (connexin 43, Cx-43) expression in pentylenetetrazole (PTZ) induced kindling model. Methods: Twenty four Sprague dawely rats were divided into 3 equal groups (a) normal group: normal rats. (b) PTZ kindled group: received PTZ at the dose of 50 mg/kg via intraperitoneal injection (i.p.) every other day for 2 weeks (c) ceftriaxone treated group: received ceftriaxone at the dose 200 mg\kg/12 hrs via i.p. injection daily from the 6th dose of PTZ for 3 days. Racine score, latency before beginning the first myoclonic jerk and duration of the jerks used as parameters of behavioral assessment. Immunohistopathological study for Cx-43 expression in hippocampus and measurement of markers of oxidative stress (malondialdehyde [MDA], low reduced glutathione [GSH] and catalase [CAT]) in hippocampal neurons were done. Results: PTZ kindling was associated with behavioral changes (in the form high stage of Racine score, long seizure duration and short latency for the first jerk), enhanced oxidative stress state (as demonstrated by high MDA, low GSH and CAT) and up regulation of Cx43 in hippocampal regions. While, ceftriaxone treatment ameliorated, significantly, PTZ-induced convulsions and caused significant improvement in oxidative stress markers and Cx-43 expression in hippocamal regions (p < 0.05). Conclusions: These findings support the anticonvulsive effects of some beta-lactams antibiotics which could offer a possible contributor in the basic treatment of temporal lobe epilepsy. This effect might be due to reduction of oxidative stress and Cx43 expression.


Canadian Journal of Physiology and Pharmacology | 2018

Effects of Metformin on Apoptosis and Alpha Synuclein in Rat Model of Pentylenetetrazole-induced Epilepsy

Abdelaziz M. Hussein; Mohamed El-dosoky; Mohamed El-Shafey; Mohamed El-Mesery; Amr N Ali; Khaled M. Abbas; Osama A. Abulseoud

The present study was designed to examine the possible neuroprotective and antiepileptic effects of metformin (Metf) in a rat model of pentylenetetrazole (PTZ)-induced epilepsy and its possible underlying mechanisms. Forty male albino rats were assigned to 4 groups of equal size: (1) normal control (NC) group, (2) Metf group: daily treatment with Metf (200 mg/kg, i.p.) for 2 weeks, (3) PTZ group: treatment with PTZ (50 mg/kg, i.p.) every other day for 2 weeks, and (4) Metf + PTZ group: daily treatment with PTZ and metformin (200 mg/kg, i.p.) for 2 weeks. Administration of PTZ caused a significant increase in seizure score and duration, induced a state of oxidative stress (high malondialdehyde, low reduced glutathione and catalase activity), and led to the upregulation of β-catenin, caspase-3, and its cleavage products, Hsp70 and α-synuclein, in hippocampal regions as well as a significant reduction in seizure latency. While Metf treatment significantly ameliorated PTZ-induced seizures, attenuated oxidative stress, and upregulated α-synuclein and β-catenin expression, it also inhibited caspase-3 activation and the release of the cleavage product and caused more upregulation in Hsp70 expression in hippocampal regions (p < 0.05). In conclusion, the antiepileptic and neuroprotective effects of Metf in PTZ-induced epilepsy might be due to the inhibition of apoptosis, attenuation of oxidative stress and α-synuclein expression, and upregulation of Hsp70.


Brain Sciences | 2018

l-Carnitine Modulates Epileptic Seizures in Pentylenetetrazole-Kindled Rats via Suppression of Apoptosis and Autophagy and Upregulation of Hsp70

Abdelaziz M. Hussein; Mohamed Adel; Mohamed El-Mesery; Khaled M. Abbas; Amr N Ali; Osama A. Abulseoud

l-Carnitine is a unique nutritional supplement for athletes that has been recently studied as a potential treatment for certain neuropsychiatric disorders. However, its efficacy in seizure control has not been investigated. Sprague Dawley rats were randomly assigned to receive either saline (Sal) (negative control) or pentylenetetrazole (PTZ) 40 mg/kg i.p. × 3 times/week × 3 weeks. The PTZ group was further subdivided into two groups, the first received oral l-carnitine (l-Car) (100 mg/kg/day × 4 weeks) (PTZ + l-Car), while the second group received saline (PTZ + Sal). Daily identification and quantification of seizure scores, time to the first seizure and the duration of seizures were performed in each animal. Molecular oxidative markers were examined in the animal brains. l-Car treatment was associated with marked reduction in seizure score (p = 0.0002) that was indicated as early as Day 2 of treatment and continued throughout treatment duration. Furthermore, l-Car significantly prolonged the time to the first seizure (p < 0.0001) and shortened seizure duration (p = 0.028). In addition, l-Car administration for four weeks attenuated PTZ-induced increase in the level of oxidative stress marker malondialdehyde (MDA) (p < 0.0001) and reduced the activity of catalase enzyme (p = 0.0006) and increased antioxidant GSH activity (p < 0.0001). Moreover, l-Car significantly reduced PTZ-induced elevation in protein expression of caspase-3 (p < 0.0001) and β-catenin (p < 0.0001). Overall, our results suggest a potential therapeutic role of l-Car in seizure control and call for testing these preclinical results in a proof of concept pilot clinical study.


European Neuropsychopharmacology | 2017

The acute effect of cannabis on plasma, liver and brain ammonia dynamics, a translational study

Osama A. Abulseoud; Maria Laura Zuccoli; Lifeng Zhang; Allan J. Barnes; Marilyn A. Huestis; Da-Ting Lin

Recent reports of ammonia released during cannabis smoking raise concerns about putative neurotoxic effects. Cannabis (54mg) was administered in a double-blind, placebo-controlled design to healthy cannabis users (n=15) either orally, or through smoking (6.9%THC cigarette) or inhalation of vaporized cannabis (Volcano®). Serial assay of plasma ammonia concentrations at 0, 2, 4, 6, 8, 10, 15, 30, and 90min from onset of cannabis administration showed significant time (P=0.016), and treatment (P=0.0004) effects with robust differences between placebo and edible at 30 (P=0.002), and 90min (P=0.007) and between placebo and vaporized (P=0.02) and smoking routes (P=0.01) at 90min. Furthermore, plasma ammonia positively correlated with blood THC concentrations (P=0.03). To test the hypothesis that this delayed increase in plasma ammonia originates from the brain we administered THC (3 and 10mg/kg) to mice and measured plasma, liver, and brain ammonia concentrations at 1, 3, 5 and 30min post-injection. Administration of THC to mice did not cause significant change in plasma ammonia concentrations within the first 5min, but significantly reduced striatal glutamine-synthetase (GS) activity (P=0.046) and increased striatal ammonia concentration (P=0.016). Furthermore, plasma THC correlated positively with striatal ammonia concentration (P<0.001) and negatively with striatal GS activity (P=0.030). At 30min, we found marked increase in striatal ammonia (P<0.0001) associated with significant increase in plasma ammonia (P=0.042) concentration. In conclusion, the results of these studies demonstrate that cannabis intake caused time and route-dependent increases in plasma ammonia concentrations in human cannabis users and reduced brain GS activity and increased brain and plasma ammonia concentrations in mice.


Clinical Chemistry | 2016

Free and Glucuronide Whole Blood Cannabinoids' Pharmacokinetics after Controlled Smoked, Vaporized, and Oral Cannabis Administration in Frequent and Occasional Cannabis Users: Identification of Recent Cannabis Intake

Matthew N. Newmeyer; Madeleine J. Swortwood; Allan J. Barnes; Osama A. Abulseoud; Karl B. Scheidweiler; Marilyn A. Huestis


Drug and Alcohol Dependence | 2017

Subjective and physiological effects, and expired carbon monoxide concentrations in frequent and occasional cannabis smokers following smoked, vaporized, and oral cannabis administration

Matthew N. Newmeyer; Madeleine J. Swortwood; Osama A. Abulseoud; Marilyn A. Huestis


Journal of Applied Toxicology | 2017

Evaluation of divided attention psychophysical task performance and effects on pupil sizes following smoked, vaporized and oral cannabis administration

Matthew N. Newmeyer; Madeleine J. Swortwood; Megan E. Taylor; Osama A. Abulseoud; Thomas H. Woodward; Marilyn A. Huestis


Forensic Toxicology | 2017

On-site oral fluid Δ9-tetrahydrocannabinol (THC) screening after controlled smoked, vaporized, and oral cannabis administration

Madeleine J. Swortwood; Matthew N. Newmeyer; Osama A. Abulseoud; Maria Andersson; Allan J. Barnes; Karl B. Scheidweiler; Marilyn A. Huestis

Collaboration


Dive into the Osama A. Abulseoud's collaboration.

Top Co-Authors

Avatar

Marilyn A. Huestis

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Madeleine J. Swortwood

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Matthew N. Newmeyer

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Karl B. Scheidweiler

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Allan J. Barnes

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Andersson

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge