Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osamu Hoshino is active.

Publication


Featured researches published by Osamu Hoshino.


Neural Networks | 1997

Role of itinerancy among attractors as dynamical map in distributed coding scheme

Osamu Hoshino; Noriaki Usuba; Yoshiki Kashimori; Takeshi Kambara

A basic frame, based on which certain features of sensory stimuli can be extracted systematically in a distributed coding scheme, has not been clarified yet. This paper proposes that the basic frame can be a dynamical map represented by itinerancy among attractors. Features of entities are encoded by attractors of neural networks. Relations between the features in each modality are mapped on dynamical links between the attractors in each network relevant to each modality. The itinerant states, in which the network dynamic state itinerates chaotically or cyclically among the attractors, can work as dynamical maps. The recognition of features is carried out by a phase transition from an itinerant state to a constituent attractor. The phase transition is induced by a short-term synaptic change based on the Hebbian rule under application of a relevant stimulation. A theta-like global oscillation is necessary for self-organized formation of the chaotically itinerant state.


Neural Computation | 2009

Gaba transporter preserving ongoing spontaneous neuronal activity at firing subthreshold

Osamu Hoshino

There has been compelling evidence that the GABA transporter is crucial not only for removing gamma-aminobutyric acid (GABA) from but also releasing it into extracellular space, thereby clamping ambient GABA (GABA in extracellular space) at a certain level. The ambient GABA is known to activate extrasynaptic GABA receptors and provide tonic inhibitory current into neurons. We investigated how the transporter regulates the level of ambient GABA, mediates tonic neuronal inhibition, and influences ongoing spontaneous neuronal activity. A cortical neural network model is proposed in which GABA transporters on lateral (L) and feedback (F) inhibitory (GABAergic) interneurons are functionally made. Principal (P) cell assemblies participate in expressing information about elemental sensory features. At membrane potentials below the reversal potential, there is net influx of GABA, whereas at membrane potentials above the reversal potential, there is net efflux of GABA. Through this transport mechanism, ambient GABA concentration is kept within a submicromolar range during an ongoing spontaneous neuronal activity time period. Here we show that the GABA transporter on L cells regulates the overall level of ambient GABA across cell assemblies, and that on F cells it does so within individual cell assemblies. This combinatorial regulation of ambient GABA allows P cells to oscillate near firing threshold during the ongoing time period, thereby reducing their reaction time to externally applied stimuli. We suggest that the GABA transporter, with its forward and reverse transport mechanism, could regulate the ambient GABA. This transporter-mediated ambient GABA regulation may contribute to establishing an ongoing subthreshold neuronal state by which the network can respond rapidly to subsequent sensory input.


Neural Computation | 2001

A Hierarchical Dynamical Map as a Basic Frame for Cortical Mapping and Its Application to Priming

Osamu Hoshino; Satoru Inoue; Yoshiki Kashimori; Takeshi Kambara

A hierarchical dynamical map is proposed as the basic framework for sensory cortical mapping. To show how the hierarchical dynamical map works in cognitive processes, we applied it to a typical cognitive task known as priming, in which cognitive performance is facilitated as a consequence of prior experience. Prior to the priming task, the network memorizes a sensory scene containing multiple objects presented simultaneously using a hierarchical dynamical map. Each object is composed of different sensory features. The hierarchical dynamical map presented here is formed by random itinerancy among limit-cycle attractors into which these objects are encoded. Each limit-cycle attractor contains multiple point attractors into which elemental features belonging to the same object are encoded. When a feature stimulus is presented as a priming cue, the network state is changed from the itinerant state to a limit-cycle attractor relevant to the priming cue. After a short priming period, the network state reverts to the itinerant state. Under application of the test cue, consisting of some feature belonging to the object relevant to the priming cue and fragments of features belonging to others, the network state is changed to a limit-cycle attractor and finally to a point attractor relevant to the target feature. This process is considered as the identification of the target. The model consistently reproduces various observed results for priming processes such as the difference in identification time between cross-modality and within-modality priming tasks, the effect of interval between priming cue and test cue on identification time, the effect of priming duration on the time, and the effect of repetition of the same priming task on neural activity.


Neural Computation | 2011

Neuronal responses below firing threshold for subthreshold cross-modal enhancement

Osamu Hoshino

Multisensory integration (such as somatosensation-vision, gustation-olfaction) could occur even between subthreshold stimuli that in isolation do not reach perceptual awareness. For example, when a somatosensory (subthreshold) stimulus is delivered within a close spatiotemporal congruency, a visual (subthreshold) stimulus evokes a visual percept. Cross-modal enhancement of visual perception is maximal when the somatosensory stimulation precedes the visual one by tens of milliseconds. This rapid modulatory response would not be consistent with a top-down mechanism acting through higher-order multimodal cortical areas, but rather a direct interaction between lower-order unimodal areas. To elucidate the neuronal mechanisms of subthreshold cross-modal enhancement, we simulated a neural network model. In the model, lower unimodal (X, Y) and higher multimodal (M) networks are reciprocally connected by bottom-up and top-down axonal projections. The lower networks are laterally connected with each other. A pair of stimuli was presented to the lower networks, whose respective intensities were too weak to induce salient neuronal activity (population response) when presented alone. Neurons of the Y network were slightly depolarized below firing threshold when a cross-modal stimulus was presented alone to the X network. This allowed the Y network to make a rapid (within tens of milliseconds) population response when presented with a subsequent congruent stimulus. The reaction speed of the Y network was accelerated, provided that the top-down projections were strengthened. We suggest that a subthreshold (nonpopulation) response to a cross-modal stimulus, acting through interaction between lower (primary unisensory) areas, may be essential for a rapid suprathreshold (population) response to a congruent stimulus that follows. Top-down influences on cross-modal enhancement may be faster than expected, accelerating reaction speed to input, in which ongoing-spontaneous subthreshold excitation of lower-order unimodal cells by higher-order multimodal cells may play an active role.


Neural Computation | 2012

Regulation of ambient gaba levels by neuron-glia signaling for reliable perception of multisensory events

Osamu Hoshino

Activities of sensory-specific cortices are known to be suppressed when presented with a different sensory modality stimulus. This is referred to as cross-modal inhibition, for which the conventional synaptic mechanism is unlikely to work. Interestingly, the cross-modal inhibition could be eliminated when presented with multisensory stimuli arising from the same event. To elucidate the underlying neuronal mechanism of cross-modal inhibition and understand its significance for multisensory information processing, we simulated a neural network model. Principal cell to and GABAergic interneuron to glial cell projections were assumed between and within lower-order unimodal networks (X and Y), respectively. Cross-modality stimulation of Y network activated its principal cells, which then depolarized glial cells of X network. This let transporters on the glial cells export GABA molecules into the extracellular space and increased a level of ambient (extrasynaptic) GABA. The ambient GABA molecules were accepted by extrasynaptic GABAa receptors and tonically inhibited principal cells of the X network. Cross-modal inhibition took place in a nonsynaptic manner. Identical modality stimulation of X network activated its principal cells, which then activated interneurons and hyperpolarized glial cells of the X network. This let their transporters import (remove) GABA molecules from the extracellular space and reduced tonic inhibitory current in principal cells, thereby improving their gain function. Top-down signals from a higher-order multimodal network (M) contributed to elimination of the cross-modal inhibition when presented with multisensory stimuli that arose from the same event. Tuning into the multisensory event deteriorated if the cross-modal inhibitory mechanism did not work. We suggest that neuron-glia signaling may regulate local ambient GABA levels in order to coordinate cross-modal inhibition and improve neuronal gain function, thereby achieving reliable perception of multisensory events.


Neural Computation | 2007

Enhanced sound perception by widespread-onset neuronal responses in auditory cortex

Osamu Hoshino

Accumulating evidence suggests that auditory cortical neurons exhibit widespread-onset responses and restricted sustained responses to sound stimuli. When a sound stimulus is presented to a subject, the auditory cortex first responds with transient discharges across a relatively large population of neurons, showing widespread-onset responses. As time passes, the activation becomes restricted to a small population of neurons that are preferentially driven by the stimulus, showing restricted sustained responses. The sustained responses are considered to have a role in expressing information about the stimulus, but it remains to be seen what roles the widespread-onset responses have in auditory information processing. We carried out numerical simulations of a neural network model for a lateral belt area of auditory cortex. In the network, dynamic cell assemblies expressed information about auditory sounds. Lateral excitatory and inhibitory connections were made between cell assemblies, respectively, by direct and indirect projections via interneurons. Widespread-onset neuronal responses to sound stimuli (bandpassed noises) took place over the network if lateral excitation preceded lateral inhibition, making a time widow for the onset responses. The widespread-onset responses contributed to the accelerating reaction time of neurons to sensory stimulation. Lateral interaction among dynamic cell assemblies was essential for maintaining ongoing membrane potentials near thresholds for action potential generation, thereby accelerating reaction time to subsequent sensory input as well. We suggest that the widespread-onset neuronal responses and the ongoing subthreshold cortical state, for which the coordination of lateral synaptic interaction among dissimilar cell assemblies is essential, may work together in order for the auditory cortex to quickly detect the sudden occurrence of sounds from the external environment.


Neural Computation | 2011

Subthreshold membrane depolarization as memory trace for perceptual learning

Osamu Hoshino

Experience-dependent synaptic plasticity characterizes the adaptable brain and is believed to be the cellular substrate for perceptual learning. A chemical agent such as gamma-aminobutyric acid (GABA) is known to affect synaptic alteration, perhaps gating perceptual learning. We examined whether and how ambient (extrasynaptic) GABA affects experience-dependent synaptic alteration. A cortical neural network model was simulated. Transporters on GABAergic interneurons regulate ambient GABA levels around their axonal target neurons by removing GABA from (forward transport) or releasing it into (reverse transport) the extracellular space. The ambient GABA provides neurons with tonic inhibitory currents by activating extrasynaptic GABAa receptors. During repeated exposures to the same stimulus, we modified the synaptic connection strength between principal cells in a spike-timing-dependent manner. This modulated the activity of GABAergic interneurons, and reduced or augmented ambient GABA concentration. Reduction in ambient GABA concentration led to slight depolarization (less than several millivolts) in ongoing-spontaneous membrane potential. This was a subthreshold neuronal behavior because ongoing-spontaneous spiking activity remained almost unchanged. The ongoing-spontaneous subthreshold depolarization improved a suprathreshold neuronal response. If the stimulus was long absent for perceptual learning, augmentation of ambient GABA concentration took place and the ongoing-spontaneous subthreshold depolarization was depressed. We suggest that a perceptual memory trace could be left in neuronal circuitry as an ongoing-spontaneous subthreshold membrane depolarization, which would allow that memory to be accessed easily afterward, whereas a trace of a memory that has not recently been retrieved fades away when the ongoing-spontaneous subthreshold membrane depolarization built by previous perceptual learning is depressed. This would lead that memory to be accessed with some difficulty. In the brain, ambient GABA, whose level could be regulated by transporter may have an important role in leaving memory trace for perceptual learning.


Network: Computation In Neural Systems | 2006

Coherent ongoing subthreshold state of a cortical neural network regulated by slow- and fast-spiking interneurons

Osamu Hoshino

Although details of cortical interneurons in anatomy and physiology have been well understood, little is known about how they contribute to ongoing spontaneous neuronal activity that could have a great impact on subsequent neuronal information processing. Simulating a cortical neural network model of an early sensory area, we investigated whether and how two distinct types of inhibitory interneurons, or fast-spiking interneurons with narrow axonal arbors and slow-spiking interneurons with wide axonal arbors, have a spatiotemporal influence on the ongoing activity of principal cells and subsequent cognitive information processing. In the model, dynamic cell assemblies, or population activation of principal cells, expressed information about specific sensory features. Within cell assemblies, fast-spiking interneurons give a feedback inhibitory effect on principal cells. Between cell assemblies, slow-spiking interneurons give a lateral inhibitory effect on principal cells. Here, we show that these interneurons keep the network at a subthreshold level for action potential generation under the ongoing state, by which the reaction time of principal cells to sensory stimulation could be accelerated. We suggest that the best timing of inhibition mediated by fast-spiking interneurons and slow-spiking interneurons allows the network to remain near threshold for rapid responses to input.


Neural Computation | 2010

Alteration of ambient gaba by phasic and tonic neuronal activation

Osamu Hoshino

Neurons of primary auditory cortex (AI) emit spikes (action potentials) in two distinct manners, responding to sounds in an onset or a sustained manner. The former AI neurons are called phasic cells and the latter tonic cells. The phasic cells generate spikes for a brief time period (less than hundreds of milliseconds) at the onset of an auditory stimulus (e.g., a tone frequency sound), and the tonic cells continuously generate spikes throughout the stimulation period. Simulating a neural network model of AI, we investigated whether and how the onset discharges influence the sustained discharges that are believed to play a central role in encoding auditory information. Onset discharges, triggered by a phasic input, briefly excited GABAergic interneurons and transiently increased the level of ambient GABA, which was immediately recognized by extrasynaptic GABAa receptors and provided inhibitory currents into neurons. The transient alteration of ambient GABA allowed tonic cells to respond selectively to a tonic input. The timing of phasic input relative to a tonic one had a great impact on the responsiveness of tonic cells. We found optimal timing for the best selective responsiveness: phasic input preceding tonic input by several tens of milliseconds. Offset discharges induced by a secondary input to phasic cells, applied at the end of the tonic input period, suddenly terminated the sustained discharges and allowed the network to return rapidly to the ongoing-spontaneous neuronal state. We suggest that the transporter-mediated alteration of ambient GABA, triggered by onset discharges, may improve the response property of AI neurons. Offset discharges may have a role in resetting AI neurons so that they can prepare for the next auditory input.


Neural Computation | 2004

Neuronal bases of perceptual learning revealed by a synaptic balance scheme

Osamu Hoshino

Our ability to perceive external sensory stimuli improves as we experience the same stimulus repeatedly. This perceptual enhancement, called perceptual learning, has been demonstrated for various sensory systems, such as vision, audition, and somatosensation. I investigated the contribution of lateral excitatory and inhibitory synaptic balance to perceptual learning. I constructed a simple associative neural network model in which sensory features were expressed by the activities of specific cell assemblies. Each neuron is sensitive to a specific sensory feature, and the neurons belonging to the same cell assembly are sensitive to the same feature. During perceptual learning processes, the network was presented repeatedly with a stimulus that was composed of a sensory feature and noise, and the lateral excitatory and inhibitory synaptic connection strengths between neurons were modified according to a pulse-timing-based Hebbian rule. Perceptual learning enhanced the cognitive performance of the network, increasing the signal-to-noise ratio of neuronal activity. I suggest here that the alteration of the synaptic balance may be essential for perceptual learning, especially when the brain tries to adopt the most suitable strategysignal enhancement, noise reduction, or bothfor a given perceptual task.

Collaboration


Dive into the Osamu Hoshino's collaboration.

Top Co-Authors

Avatar

Yoshiki Kashimori

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Kambara

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoru Inoue

University of Electro-Communications

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ai Miyamoto

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haoling Liu

University of Electro-Communications

View shared research outputs
Researchain Logo
Decentralizing Knowledge