Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osamu Kakinohana is active.

Publication


Featured researches published by Osamu Kakinohana.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Mutant dynein (Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest motor neuron death

Hristelina Ilieva; Koji Yamanaka; Shelle Malkmus; Osamu Kakinohana; Tony L. Yaksh; Martin Marsala; Don W. Cleveland

Dominant mutations in cytoplasmic dynein (Loa or Cra) have been reported to provoke selective, age-dependent killing of motor neurons, while paradoxically slowing degeneration and death of motor neurons in one mouse model of an inherited form of ALS. Examination of Loa animals reveals no degeneration of large caliber α-motor neurons beyond an age-dependent loss (initiating only after 18 months) that was comparable in Loa and wild-type littermates. Absence of Loa-mediated α-motor neuron loss contrasted with dramatic, sustained, mutant dynein-mediated postnatal loss of lumbar proprioceptive sensory axons, accompanied by decreased excitatory glutamatergic inputs to motor neurons. In mouse models of inherited ALS caused by mutations in superoxide dismutase (SOD1), mutant dynein modestly prolonged survival in the one mouse model with the most extensive motor neuron loss (SODG93A) while showing marginal (SODG85R) or no (SODG37R) benefit in models with higher numbers of surviving motor neurons at end stage. These findings support a noncell autonomous, excitotoxic contribution from proprioceptive sensory neurons that modestly accelerates disease onset in inherited ALS.


Neuroscience | 2007

FUNCTIONAL RECOVERY IN RATS WITH ISCHEMIC PARAPLEGIA AFTER SPINAL GRAFTING OF HUMAN SPINAL STEM CELLS

Dasa Cizkova; Osamu Kakinohana; Karolina Kucharova; Silvia Marsala; Karl Johe; Thomas G. Hazel; Michael P. Hefferan; Martin Marsala

Transient spinal cord ischemia in humans can lead to the development of permanent paraplegia with prominent spasticity and rigidity. Histopathological analyses of spinal cords in animals with ischemic spastic paraplegia show a selective loss of small inhibitory interneurons in previously ischemic segments but with a continuing presence of ventral alpha-motoneurons and descending cortico-spinal and rubro-spinal projections. The aim of the present study was to examine the effect of human spinal stem cells (hSSCs) implanted spinally in rats with fully developed ischemic paraplegia on the recovery of motor function and corresponding changes in motor evoked potentials. In addition the optimal time frame for cell grafting after ischemia and the optimal dosing of grafted cells were also studied. Spinal cord ischemia was induced for 10 min using aortic occlusion and systemic hypotension. In the functional recovery study, hSSCs (10,000-30,000 cells/0.5 mul/injection) were grafted into spinal central gray matter of L2-L5 segments at 21 days after ischemia. Animals were immunosuppressed with Prograf (1 mg/kg or 3 mg/kg) for the duration of the study. After cell grafting the recovery of motor function was assessed periodically using the Basso, Beattie and Bresnahan (BBB) scoring system and correlated with the recovery of motor evoked potentials. At predetermined times after grafting (2-12 weeks), animals were perfusion-fixed and the survival, and maturation of implanted cells were analyzed using antibodies recognizing human-specific antigens: nuclear protein (hNUMA), neural cell adhesion molecule (hMOC), neuron-specific enolase (hNSE) and synapthophysin (hSYN) as well as the non-human specific antibodies TUJ1, GFAP, GABA, GAD65 and GLYT2. After cell grafting a time-dependent improvement in motor function and suppression of spasticity and rigidity was seen and this improvement correlated with the recovery of motor evoked potentials. Immunohistochemical analysis of grafted lumbar segments at 8 and 12 weeks after grafting revealed intense hNSE immunoreactivity, an extensive axo-dendritic outgrowth as well as rostrocaudal and dorsoventral migration of implanted hNUMA-positive cells. An intense hSYN immunoreactivity was identified within the grafts and in the vicinity of persisting alpha-motoneurons. On average, 64% of hSYN terminals were GAD65 immunoreactive which corresponded to GABA immunoreactivity identified in 40-45% of hNUMA-positive grafted cells. The most robust survival of grafted cells was seen when cells were grafted 21 days after ischemia. As defined by cell survival and laminar distribution, the optimal dose of injected cells was 10,000-30,000 cells per injection. These data indicate that spinal grafting of hSSCs can represent an effective therapy for patients with spinal ischemic paraplegia.


Experimental Neurology | 2004

Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cord

Jason B. Carmel; Osamu Kakinohana; Ruben Mestril; Wise Young; Martin Marsala; Ronald P. Hart

Spinal ischemia is a frequent cause of paralysis. Here we explore the biological basis of ischemic preconditioning (IPC), the phenomenon in which a brief period of ischemia can confer protection against subsequent longer and normally injurious ischemia, to identify mediators of endogenous neuroprotection. Using microarrays, we examined gene expression changes induced by brief spinal ischemia using a rat balloon occlusion model. Among the nearly 5000 genes assayed, relatively few showed two-fold changes, and three groups stood out prominently. The first group codes for heat shock protein 70, which is induced selectively and robustly at 30 min after brief ischemia, with increases up to 100-fold. A second group encodes metallothioneins 1 and 2. These mRNAs are increased at 6 and 12 h after ischemia, up to 12-fold. The third group codes for a group of immediate-early genes not previously associated with spinal ischemia: B-cell translocation gene 2 (BTG2), the transcription factors early growth response 1 (egr-1) and nerve growth factor inducible B (NGFI-B), and a mitogen-activated protein kinase phosphatase, ptpn16, an important cell signaling regulator. These mRNAs peak at 30 min and return to baseline or are decreased 6 h after ischemia. Several other potentially protective genes cluster with these induced mRNAs, including small heat shock proteins, and many have not been previously associated with IPC. These results provide both putative mediators of IPC and molecular targets for testing preconditioning therapies.


Journal of Neuroscience Research | 2003

Changes in spinal GDNF, BDNF, and NT-3 expression after transient spinal cord ischemia in the rat

Joho Tokumine; Osamu Kakinohana; Dasa Cizkova; Doug W. Smith; Martin Marsala

Previous studies have demonstrated that the expression of several growth factors including glial cell‐derived neurotrophic factor (GDNF), brain‐derived growth factor (BDNF), and neurotrophin‐3 (NT‐3) play an important role in defining neuronal survival after brain ischemia. In the present study, using a well‐defined model of transient spinal ischemia in rat, we characterized the changes in spinal GDNF, BDNF, and NT‐3 expression as defined by enzyme‐linked immunosorbent assay (ELISA) and immunofluorescence coupled with deconvolution microscopy. In control animals, baseline levels of GDNF, BDNF, and NT‐3 (74 ± 22, 3,600 ± 270, 593 ± 176 pg/g tissue, respectively) were measured. In the ischemic group, 6 min of spinal ischemia resulted in a biphasic response with increases in tissue GDNF and BDNF concentrations at the 2‐hr and 72‐hr points after ischemia. No significant differences in NT‐3 concentration were detected. Deconvolution analysis revealed that the initial increase in tissue GDNF concentration corresponded to a neuronal upregulation whereas the late peak seen at 72 hr corresponded with increased astrocyte‐derived GDNF synthesis. Increased expression of BDNF was seen in neurons, astrocytes, and oligodendrocytes. These data suggest that the early increase in neuronal GDNF/BDNF expression likely modulates neuronal resistance/recovery during the initial period of postischemic reflow. Increased astrocyte‐derived BDNF/GDNF expression corresponds with transient activation of astrocytes and may play an active role in neuronal plasticity after non‐injurious intervals of spinal ischemia.


PLOS ONE | 2012

Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation.

Michael P. Hefferan; Ján Gálik; Osamu Kakinohana; Gabriela Sekerková; Camila Santucci; Silvia Marsala; Roman Navarro; Marian Hruska-Plochan; Karl Johe; Eva L. Feldman; Don W. Cleveland; Martin Marsala

Background Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1) causes an inherited form of Amyotrophic Lateral Sclerosis (ALS). Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs) into the lumbar spinal cord of SOD1G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1G93A animals. Methods/Principal Findings Presymptomatic SOD1G93A rats (60–65 days old) received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal) was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50–65%) loss of large caliber descending motor axons. Conclusions/Significance These data demonstrate that in order to achieve a more clinically-adequate treatment, cell-replacement/gene therapy strategies will likely require both spinal and supraspinal targets.


European Journal of Neuroscience | 2004

Spinal implantation of hNT neurons and neuronal precursors: graft survival and functional effects in rats with ischemic spastic paraplegia

Martin Marsala; Osamu Kakinohana; Tony L. Yaksh; Zoltan Tomori; Silvia Marsala; Dasa Cizkova

Transient spinal ischemia, a complication associated with aortic cross‐clamp may lead to spastic paraplegia. Once fully developed this deficit is permanent. Quantitative histopathological assessments and pharmacological studies show that the ischemic spasticity is secondary to the loss of lumbar GABA and glycinergic inhibitory interneurons. In the present study, we investigated whether human hNT neurons or committed Sprague–Dawley rat spinal neuronal precursors (SNPs) when grafted into previously ischemic spinal segments depleted of inhibitory neurons would restore local inhibitory tone and ameliorate spasticity. Rats with functionally and electrophysiologically defined spasticity that received spinal graft of hNT neurons or neuronal precursors and immunosuppressive treatment displayed a progressive recovery of motor function that correlated with the improvement of otherwise exacerbated peripheral motor response evoked by stimulation of motor cortex. In contrast, in control, medium‐injected or oligodendrocyte‐grafted animals no significant therapeutic effect was seen. Stereological quantification of grafted neurons revealed 1–2% survival at three months after transplantation. These surviving neurons displayed a robust axo‐dendritic sprouting and expression of markers typical of mature neurons including NSE, NeuN and synaptophysin. In both treatment groups a subpopulation of grafted neurons developed GABA immunoreactivity. These data provide evidence that a region specific grafting of hNT neurons or other neuronally committed cells, which have a potential to develop inhibitory neurotransmitter phenotype, represent an effective treatment modality to modulate ischemia‐induced spastic paraplegia.


Neuroscience | 2006

Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study.

Osamu Kakinohana; Michael P. Hefferan; S. Nakamura; M. Kakinohana; Ján Gálik; Zoltan Tomori; Jozef Maršala; Tony L. Yaksh; Martin Marsala

Transient spinal cord ischemia may lead to a progressive degeneration of spinal interneurons and subsequently to increased hind limb motor tone. In the present work we sought to characterize the rigidity and spasticity components of this altered motor function by: i) tonic electromyographic activity measured in gastrocnemius muscle before and after ischemia, ii) measurement of muscle resistance during the period of ankle flexion and corresponding changes in electromyographic activity, iii) changes in Hoffmann reflex, and, iv) motor evoked potentials. In addition the effect of intrathecal treatment with baclofen (GABAB receptor agonist; 1 microg), nipecotic acid (GABA uptake inhibitor; 300 microg) and dorsal L2-L5 rhizotomy on spasticity and rigidity was studied. Finally, the changes in spinal choline acetyltransferase (ChAT) and vesicular glutamate transporter 2 and 1 (VGLUT2 and VGLUT1) expression were characterized using immunofluorescence and confocal microscopy. At 3-7 days after ischemia an increase in tonic electromyographic activity with a variable degree of rigidity was seen. In animals with modest rigidity a velocity-dependent increase in muscle resistance and corresponding appearance in electromyographic activity (consistent with the presence of spasticity) was measured during ankle rotation (4-612 degrees /s rotation). Measurement of the H-reflex revealed a significant increase in Hmax/Mmax ratio and a significant loss of rate-dependent inhibition. In the same animals a potent increase in motor evoked potential amplitudes was measured and this change correlated positively with the increased H-reflex responses. Spasticity and rigidity were consistently present for a minimum of 3 months after ischemia. Intrathecal treatment with baclofen (GABA B receptor agonist) and nipecotic acid (GABA uptake inhibitor) provided a significant suppression of spasticity, rigidity, H-reflex or motor evoked potentials. Dorsal L2-L5 rhizotomy significantly decreased muscle resistance but had no effect on increased amplitudes of motor evoked potentials. Confocal analysis of spinal cord sections at 8 weeks-12 months after ischemia revealed a continuing presence of ChAT positive alpha-motoneurons, Ia afferents and VGLUT2 and VGLUT1-positive terminals but a selective loss of small presumably inhibitory interneurons between laminae V-VII. These data demonstrate that brief transient spinal cord ischemia in rat leads to a consistent development of spasticity and rigidity. The lack of significant suppressive effect of dorsal L2-L5 rhizotomy on motor evoked potentials response indicates that descending motor input into alpha-motoneurons is independent on Ia afferent couplings and can independently contribute to increased alpha-motoneuronal excitability. The pharmacology of this effect emphasizes the potent role of GABAergic type B receptors in regulating both the spasticity and rigidity.


Stem Cell Research & Therapy | 2013

Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation

Sebastiaan van Gorp; Marjolein Leerink; Osamu Kakinohana; Oleksandr Platoshyn; Camila Santucci; Ján Gálik; Elbert A. Joosten; Marian Hruska-Plochan; Danielle Goldberg; Silvia Marsala; Karl Johe; Joseph D. Ciacci; Martin Marsala

IntroductionIntraspinal grafting of human neural stem cells represents a promising approach to promote recovery of function after spinal trauma. Such a treatment may serve to: I) provide trophic support to improve survival of host neurons; II) improve the structural integrity of the spinal parenchyma by reducing syringomyelia and scarring in trauma-injured regions; and III) provide neuronal populations to potentially form relays with host axons, segmental interneurons, and/or α-motoneurons. Here we characterized the effect of intraspinal grafting of clinical grade human fetal spinal cord-derived neural stem cells (HSSC) on the recovery of neurological function in a rat model of acute lumbar (L3) compression injury.MethodsThree-month-old female Sprague–Dawley rats received L3 spinal compression injury. Three days post-injury, animals were randomized and received intraspinal injections of either HSSC, media-only, or no injections. All animals were immunosuppressed with tacrolimus, mycophenolate mofetil, and methylprednisolone acetate from the day of cell grafting and survived for eight weeks. Motor and sensory dysfunction were periodically assessed using open field locomotion scoring, thermal/tactile pain/escape thresholds and myogenic motor evoked potentials. The presence of spasticity was measured by gastrocnemius muscle resistance and electromyography response during computer-controlled ankle rotation. At the end-point, gait (CatWalk), ladder climbing, and single frame analyses were also assessed. Syrinx size, spinal cord dimensions, and extent of scarring were measured by magnetic resonance imaging. Differentiation and integration of grafted cells in the host tissue were validated with immunofluorescence staining using human-specific antibodies.ResultsIntraspinal grafting of HSSC led to a progressive and significant improvement in lower extremity paw placement, amelioration of spasticity, and normalization in thermal and tactile pain/escape thresholds at eight weeks post-grafting. No significant differences were detected in other CatWalk parameters, motor evoked potentials, open field locomotor (Basso, Beattie, and Bresnahan locomotion score (BBB)) score or ladder climbing test. Magnetic resonance imaging volume reconstruction and immunofluorescence analysis of grafted cell survival showed near complete injury-cavity-filling by grafted cells and development of putative GABA-ergic synapses between grafted and host neurons.ConclusionsPeri-acute intraspinal grafting of HSSC can represent an effective therapy which ameliorates motor and sensory deficits after traumatic spinal cord injury.


Cell Transplantation | 2010

Analysis of dosing regimen and reproducibility of intraspinal grafting of human spinal stem cells in immunosuppressed minipigs.

Dusan Usvald; Peter Vodicka; Jana Hlučilová; Radek Prochazka; Jan Motlik; Karolina Kuchorova; Karl Johe; Silvia Marsala; Miriam Scadeng; Osamu Kakinohana; Roman Navarro; Marian Santa; Michael P. Hefferan; Tony L. Yaksh; Martin Marsala

In recent studies using a rat aortic balloon occlusion model, we have demonstrated that spinal grafting of rat or human neuronal precursors or human postmitotic hNT neurons leads to progressive amelioration of spasticity and rigidity and corresponding improvement in ambulatory function. In the present study, we characterized the optimal dosing regimen and safety profile of human spinal stem cells (HSSC) when grafted into the lumbar spinal cord segments of naive immunosuppressed minipigs. Gottingen-Minnesota minipigs (18–23 kg) were anesthetized with halothane, mounted into a spine-immobilization apparatus, and received five bilateral injections of HSSC delivered in 2, 4, 6, 8, or 10 μl of media targeted into L2-L5 central gray matter (lamina VII). The total number of delivered cells ranged between 2,500 and 100,000 per injection. Animals were immunosuppressed with Prograf® for the duration of study. After cell grafting, ambulatory function was monitored daily using a Tarlovs score. Sensory functions were assessed by mechanically evoked skin twitch test. Animals survived for 6–7 weeks. Three days before sacrifice animals received daily injections of bromodeoxyuridine (100 mg/kg; IV) and were then transcardially perfused with 4% paraformaldehyde. Th12-L6 spinal column was then dissected; the spinal cord was removed and scanned with MRI. Lumbar transverse spinal cord sections were then cut and stained with a combination of human-specific (hNUMA, hMOC, hNSE, hSYN) or nonspecific (DCX, MAP2, GABA, CHAT) antibodies. The total number of surviving cells was estimated using stereological quantification. During the first 12–24 h after cell grafting, a modest motor weakness was observed in three of eight animals but was no longer present at 4 days to 7 weeks. No sensory dysfunction was seen at any time point. Postmortem MRI scans revealed the presence of the individual grafts in the targeted spinal cord areas. Histological examination of spinal cord sections revealed the presence of hNUMA-immunoreactive grafted cells distributed between the base of the dorsal horn and the ventral horn. In all grafts intense hMOC, DCX, and hSYN immunoreactivity in grafted cells was seen. In addition, a rich axodendritic network of DCX-positive processes was identified extending 300–700 μm from the grafts. On average, 45% of hNUMA-positive neurons were GABA immunoreactive. Stereological analysis of hNUMA-positive cells showed an average of 2.5- to 3-fold increase in number of surviving cells compared with the number of injected cells. Analysis of spinal structural morphology showed that in animals injected with more than 50,000 cells/injection or volumes of injectate higher than 6 μl/injection there was tissue expansion and disruption of the local axodendritic network. Based on these data the safe total number of injected cells and volume of injectate were determined to be 30,000 cells delivered in ≤6 μl of media. These data demonstrate that highly reproducible delivery of a potential cell therapeutic candidate into spinal parenchyma can be achieved across a wide range of cell doses by direct intraspinal injections. The resulting grafts uniformly showed robust cell survival and progressive neuronal maturation.


The Journal of Neuroscience | 2007

Spinal astrocyte glutamate receptor 1 overexpression after ischemic insult facilitates behavioral signs of spasticity and rigidity

Michael P. Hefferan; Karolina Kucharova; Kiyohiko Kinjo; Osamu Kakinohana; Gabriella Sekerková; Seiya Nakamura; Tatsuya Fuchigami; Zoltan Tomori; Tony L. Yaksh; Neil Kurtz; Martin Marsala

Using a rat model of ischemic paraplegia, we examined the expression of spinal AMPA receptors and their role in mediating spasticity and rigidity. Spinal ischemia was induced by transient occlusion of the descending aorta combined with systemic hypotension. Spasticity/rigidity were identified by simultaneous measurements of peripheral muscle resistance (PMR) and electromyography (EMG) before and during ankle flexion. In addition, Hoffman reflex (H-reflex) and motor evoked potentials (MEPs) were recorded from the gastrocnemius muscle. Animals were implanted with intrathecal catheters for drug delivery and injected with the AMPA receptor antagonist NGX424 (tezampanel), glutamate receptor 1 (GluR1) antisense, or vehicle. Where intrathecal vehicle had no effect, intrathecal NGX424 produced a dose-dependent suppression of PMR [ED50 of 0.44 μg (0.33–0.58)], as well as tonic and ankle flexion-evoked EMG activity. Similar suppression of MEP and H-reflex were also seen. Western blot analyses of lumbar spinal cord tissue from spastic animals showed a significant increase in GluR1 but decreased GluR2 and GluR4 proteins. Confocal and electron microscopic analyses of spinal cord sections from spastic animals revealed increased GluR1 immunoreactivity in reactive astrocytes. Selective GluR1 knockdown by intrathecal antisense treatment resulted in a potent reduction of spasticiy and rigidity and concurrent downregulation of neuronal/astrocytic GluR1 in the lumbar spinal cord. Treatment of rat astrocyte cultures with AMPA led to dose-dependent glutamate release, an effect blocked by NGX424. These data suggest that an AMPA/kainate receptor antagonist can represent a novel therapy in modulating spasticity/rigidity of spinal origin and that astrocytes may be a potential target for such treatment.

Collaboration


Dive into the Osamu Kakinohana's collaboration.

Top Co-Authors

Avatar

Martin Marsala

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Silvia Marsala

University of California

View shared research outputs
Top Co-Authors

Avatar

Tony L. Yaksh

University of California

View shared research outputs
Top Co-Authors

Avatar

Karl Johe

University of California

View shared research outputs
Top Co-Authors

Avatar

Dasa Cizkova

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ján Gálik

Slovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Nadezda Lukacova

Slovak Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge