Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osamu Ohneda is active.

Publication


Featured researches published by Osamu Ohneda.


The EMBO Journal | 2003

HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin

Masanobu Morita; Osamu Ohneda; Toshiharu Yamashita; Satoru Takahashi; Norio Suzuki; Osamu Nakajima; Shimako Kawauchi; Masatsugu Ema; Shigeki Shibahara; Tetsuo Udono; Koji Tomita; Makoto Tamai; Kazuhiro Sogawa; Masayuki Yamamoto; Yoshiaki Fujii-Kuriyama

An HLF (HIF‐1α‐like factor)/HIF‐2α‐knockout mouse is embryonic lethal, preventing investigation of HLF function in adult mice. To investigate the role of HLF in adult pathological angiogenesis, we generated HLF‐knockdown (HLFkd/kd) mice by inserting a neomycin gene sandwiched between two loxP sequences into exon 1 of the HLF gene. HLFkd/kd mice expressing 80–20% reduction, depending on the tissue, in wild‐type HLF mRNA were fertile and apparently normal. Hyperoxia–normoxia treatment, used as a murine model of retinopathy of prematurity (ROP), induced neovascularization in wild‐type mice, but not in HLFkd/kd mice, whereas prolonged normoxia following hyperoxic treatment caused degeneration of retinal neural layers in HLFkd/kd mice due to poor vascularization. Cre‐mediated removal of the inserted gene recovered normal HLF expression and retinal neovascularization in HLFkd/kd mice. Expression levels of various angiogenic factors revealed that only erythropoietin (Epo) gene expression was significantly affected, in parallel with HLF expression. Together with the results from intraperitoneal injection of Epo into HLFkd/kd mouse, this suggests that Epo is one of the target genes of HLF responsible for experimental ROP.


Journal of Experimental Medicine | 2002

Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation

Fumio Arai; Osamu Ohneda; Takeshi Miyamoto; Xiuqin Zhang; Toshio Suda

Perichondrium in fetal limb is composed of undifferentiated mesenchymal cells. However, the multipotency of cells in this region and the role of perichondrium in bone marrow formation are not well understood. In this report, we purified and characterized perichondrial cells using a monoclonal antibody against activated leukocyte cell adhesion molecule (ALCAM) and investigated the role of perichondrial cells in hematopoietic bone marrow formation. ALCAM is expressed on hematopoietic cells, endothelial cells, bone marrow stromal cells, and mesenchymal stem cells and mediates homophilic (ALCAM–ALCAM)/heterophilic (ALCAM-CD6) cell adhesion. Here we show by immunohistochemical staining that ALCAM is expressed in perichondrium. ALCAM+ perichondrial cells isolated by FACS® exhibit the characteristics of mesenchymal stem cells. ALCAM+ cells can differentiate into osteoblasts, adipocytes, chondrocytes, and stromal cells, which can support osteoclastogenesis, hematopoiesis, and angiogenesis. Furthermore, the addition of ALCAM-Fc or CD6-Fc to the metatarsal culture, the invasion of the blood vessels to a cartilage was inhibited. Our findings indicate that ALCAM+ perichondrial cells participate in vascular invasion by recruiting osteoclasts and vessels. These findings suggest that perichondrium might serve as a stem cell reservoir and play an important role in the early development of a bone and bone marrow.


Developmental Biology | 2003

Identification and characterization of stem cells in prepubertal spermatogenesis in mice

Kazuyuki Ohbo; Shosei Yoshida; Masako Ohmura; Osamu Ohneda; Takehiko Ogawa; Hideaki Tsuchiya; Takashi Kuwana; James Kehler; Kuniya Abe; Hans R. Schöler; Toshio Suda

The stem cell properties of gonocytes and prospermatogonia at prepubertal stages are still largely unknown: it is not clear whether gonocytes and prospermatogonia are a special cell type or similar to adult undifferentiated spermatogonia. To characterize these cells, we have established transgenic mice carrying EGFP (enhanced green fluorescence protein) cDNA under control of an Oct4 18-kb genomic fragment containing the minimal promoter and proximal and distal enhancers; Oct4 is reported to be expressed in undifferentiated spermatogonia at prepubertal stages. Generation of transgenic mice enabled us to purify gonocytes and prospermatogonia from the somatic cells of the testis. Transplantation studies of testicular cells so far have been done with a mixture of germ cells and somatic cells. This is the first report that establishes how to purify germ cells from total testicular cells, enabling evaluation of cell-autonomous repopulating activity of a subpopulation of prospermatogonia. We show that prospermatogonia differ markedly from adult spermatogonia in both the size of the KIT-negative population and cell cycle characteristics. The GFP(+) KIT(-) fraction of prospermatogonia has much higher repopulating activity than does the GFP(+)KIT(+) population in the adult environment. Interestingly, the GFP(+)KIT(+) population still exhibits repopulating activity, unlike adult KIT-positive spermatogonia. We also show that ALCAM, activated leukocyte cell adhesion molecule, is expressed transiently in gonocytes. Sertoli cells and myoid cells also express ALCAM at the same stage, suggesting that ALCAM may contribute to gonocyte-Sertoli cell adhesion and migration of gonoyctes toward the basement membrane.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

A Novel Class of Prolyl Hydroxylase Inhibitors Induces Angiogenesis and Exerts Organ Protection Against Ischemia

Masaomi Nangaku; Yuko Izuhara; Shunya Takizawa; Toshiharu Yamashita; Yoshiaki Fujii-Kuriyama; Osamu Ohneda; Masayuki Yamamoto; Charles van Ypersele de Strihou; Noriaki Hirayama; Toshio Miyata

Objective—Hypoxia inducible factor (HIF) plays a pivotal role in the adaptation to ischemic conditions. Its activity is modulated by an oxygen-dependent hydroxylation of proline residues by prolyl hydroxylases (PHD). Methods and Results—We discovered 2 unique compounds (TM6008 and TM6089), which inhibited PHD and stabilized HIF activity in vitro. Our docking simulation studies based on the 3-dimensional structure of human PHD2 disclosed that they preferentially bind to the active site of PHD. Whereas PHD inhibitors previously reported inhibit PHD activity via iron chelation, TM6089 does not share an iron chelating motif and is devoid of iron chelating activity. In vitro Matrigel assays and in vivo sponge assays demonstrated enhancement of angiogenesis by local administration of TM6008 and TM6089. Their oral administration stimulated HIF activity in various organs of transgenic rats expressing a hypoxia-responsive reporter vector. No acute toxicity was observed up to 2 weeks after a single oral dose of 2000 mg/kg for TM6008. Oral administration of TM6008 protected neurons in a model of cerebrovascular disease. The protection was associated with amelioration of apoptosis but independent of enhanced angiogenesis. Conclusions—The present study uncovered beneficial effects of novel PHD inhibitors preferentially binding to the active site of PHD.


Journal of The American Society of Nephrology | 2007

Protective Role of Hypoxia-Inducible Factor-2α against Ischemic Damage and Oxidative Stress in the Kidney

Ichiro Kojima; Tetsuhiro Tanaka; Reiko Inagi; Hideki Kato; Toshiharu Yamashita; Ai Sakiyama; Osamu Ohneda; Norihiko Takeda; Masataka Sata; Toshio Miyata; Toshiro Fujita; Masaomi Nangaku

Central to cellular responses to hypoxic environment is the hypoxia-inducible factor (HIF) transcriptional control system. A role for HIF-2alpha was investigated in a model of renal ischemia-reperfusion injury (IRI) associated with oxidative stress using HIF-2alpha knockdown mice. In these mice, HIF-2alpha expression was approximately one half that of wild-type mice, whereas HIF-1alpha expression was equivalent. HIF-2alpha knockdown mice were more susceptible to renal IRI, as indicated by elevated blood urea nitrogen levels and semiquantitative histologic analysis. Immunostaining with markers of oxidative stress showed enhanced oxidative stress in the kidney of HIF-2alpha knockdown mice, which was associated with peritubular capillary loss. Real-time quantitative PCR analysis showed decreased expression of antioxidative stress genes in the HIF-2alpha knockdown kidneys. Studies that used small interference RNA confirmed regulation of the antioxidative stress genes in cultured endothelial cells. Although HIF-2alpha knockdown mice were anemic, serum erythropoietin levels were not significantly increased, reflecting inappropriate response to anemia as a result of HIF-2alpha knockdown. Experiments that used hemodiluted mice with renal ischemia demonstrated that anemia of this degree did not affect susceptibility to ischemia. Knockdown of HIF-2alpha in inflammatory cells by bone marrow transplantation experiments demonstrated that HIF-2alpha in inflammatory cells did not contribute to susceptibility to renal IRI. Restoration of HIF-2alpha in endothelium by intercrossing with Tie1-Cre mice ameliorated renal injury by IRI, demonstrating a specific role of endothelial HIF-2alpha. These results suggest that HIF-2alpha in the endothelium has a protective role against ischemia of the kidney via amelioration of oxidative stress.


The FASEB Journal | 2005

Enhanced erythropoiesis mediated by activation of the renin-angiotensin system via angiotensin II type 1a receptor

Hideki Kato; Junji Ishida; Shigehiko Imagawa; Tomoko Saito; Norio Suzuki; Toshiki Matsuoka; Takeshi Sugaya; Keiji Tanimoto; Takashi Yokoo; Osamu Ohneda; Fumihiro Sugiyama; Ken-ichi Yagami; Toshiro Fujita; Masayuki Yamamoto; Masaomi Nangaku; Akiyoshi Fukamizu

Although clinical and experimental studies have long suggested a role for the renin‐angiotensin system (RAS) in the regulation of erythropoiesis, the molecular basis of this role has not been well understood. We report here that transgenic mice carrying both the human renin and human angiotensinogen genes displayed persistent erythrocytosis as well as hypertension. To identify the receptor molecule responsible for this phenotype, we introduced both transgenes into the AT1a receptor null background and found that the hematocrit level in the compound mice was restored to the normal level. Angiotensin II has been shown to influence erythropoiesis by two means, up‐regulation of erythropoietin levels and direct stimulation of erythroid progenitor cells. Thus, we conducted bone marrow transplantation experiments and clarified that AT1a receptors on bone marrow‐derived cells were dispensable for RAS‐dependent erythrocytosis. Plasma erythropoietin levels and kidney erythropoietin mRNA expression in the double transgenic mice were significantly increased compared with those of the wild‐type control, while the elevated plasma erythropoietin levels were significantly attenuated in the compound mice. These results provide clear genetic evidence that activated RAS enhances erythropoiesis through the AT1a receptor of kidney cells and that this effect is mediated by the elevation of plasma erythropoietin levels in vivo.


Stem Cells and Development | 2013

Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibit, But Adipose Tissue-Derived Mesenchymal Stem Cells Promote, Glioblastoma Multiforme Proliferation

Keiko Akimoto; Kenichi Kimura; Masumi Nagano; Shingo Takano; Georgina To'a Salazar; Toshiharu Yamashita; Osamu Ohneda

Mesenchymal stem cells (MSCs) possess self-renewal and multipotential differentiation abilities, and they are thought to be one of the most reliable stem cell sources for a variety of cell therapies. Recently, cell therapy using MSCs has been studied as a novel therapeutic approach for cancers that show refractory progress and poor prognosis. MSCs from different tissues have different properties. However, the effect of different MSC properties on their application in anticancer therapies has not been thoroughly investigated. In this study, to characterize the anticancer therapeutic application of MSCs from different sources, we established two different kinds of human MSCs: umbilical cord blood-derived MSCs (UCB-MSCs) and adipose-tissue-derived MSCs (AT-MSCs). We used these MSCs in a coculture assay with primary glioblastoma multiforme (GBM) cells to analyze how MSCs from different sources can inhibit GBM growth. We found that UCB-MSCs inhibited GBM growth and caused apoptosis, but AT-MSCs promoted GBM growth. Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling assay clearly demonstrated that UCB-MSCs promoted apoptosis of GBM via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL was expressed more highly by UCB-MSCs than by AT-MSCs. Higher mRNA expression levels of angiogenic factors (vascular endothelial growth factor, angiopoietin 1, platelet-derived growth factor, and insulin-like growth factor) and stromal-derived factor-1 (SDF-1/CXCL12) were observed in AT-MSCs, and highly vascularized tumors were developed when AT-MSCs and GBM were cotransplanted. Importantly, CXCL12 inhibited TRAIL activation of the apoptotic pathway in GBM, suggesting that AT-MSCs may support GBM development in vivo by at least two distinct mechanisms-promoting angiogenesis and inhibiting apoptosis. The opposite effects of AT-MSCs and UCB-MSCs on GBM clearly demonstrate that differences must be considered when choosing a stem cell source for safety in clinical application.


Molecular and Cellular Biology | 2005

GATA Motifs Regulate Early Hematopoietic Lineage-Specific Expression of the Gata2 Gene

Maki Kobayashi-Osaki; Osamu Ohneda; Norio Suzuki; Naoko Minegishi; Tomomasa Yokomizo; Satoru Takahashi; Kim Chew Lim; James Douglas Engel; Masayuki Yamamoto

ABSTRACT Transcription factor GATA-2 is essential for definitive hematopoiesis, which developmentally emerges from the para-aortic splanchnopleura (P-Sp). The expression of a green fluorescent protein (GFP) reporter placed under the control of a 3.1-kbp Gata2 gene regulatory domain 5′ to the distal first exon (IS) mirrored that of the endogenous Gata2 gene within the P-Sp and yolk sac (YS) blood islands of embryonic day (E) 9.5 murine embryos. The P-Sp- and YS-derived GFP+ fraction of flow-sorted cells dissociated from E9.5 transgenic embryos contained far more CD34+/c-Kit+ cells than the GFP− fraction did. When cultured in vitro, the P-Sp GFP+ cells generated both immature hematopoietic and endothelial cell clusters. Detailed transgenic mouse reporter expression analyses demonstrate that five GATA motifs within the 3.1-kbp Gata2 early hematopoietic regulatory domain (G2-EHRD) were essential for GFP expression within the dorsal aortic wall, where hemangioblasts, the earliest precursors possessing both hematopoietic and vascular developmental potential, are thought to reside. These results thus show that the Gata2 gene IS promoter is regulated by a GATA factor(s) and selectively marks putative hematopoietic/endothelial precursor cells within the P-Sp.


Molecular and Cellular Biology | 2005

Molecular Determinants of NOTCH4 Transcription in Vascular Endothelium

Jing Wu; Fumiko Iwata; Jeffrey A. Grass; Cameron S. Osborne; Laura Elnitski; Peter Fraser; Osamu Ohneda; Masayuki Yamamoto; Emery H. Bresnick

ABSTRACT The process whereby the primitive vascular network develops into the mature vasculature, known as angiogenic vascular remodeling, is controlled by the Notch signaling pathway. Of the two mammalian Notch receptors expressed in vascular endothelium, Notch1 is broadly expressed in diverse cell types, whereas Notch4 is preferentially expressed in endothelial cells. As mechanisms that confer Notch4 expression were unknown, we investigated how NOTCH4 transcription is regulated in human endothelial cells and in transgenic mice. The NOTCH4 promoter and the 5′ portion of NOTCH4 assembled into an endothelial cell-specific histone modification pattern. Analysis of NOTCH4 primary transcripts in human umbilical vein endothelial cells by RNA fluorescence in situ hybridization revealed that 36% of the cells transcribed one or both NOTCH4 alleles. The NOTCH4 promoter was sufficient to confer endothelial cell-specific transcription in transfection assays, but intron 1 or upstream sequences were required for expression in the vasculature of transgenic mouse embryos. Cell-type-specific activator protein 1 (AP-1) complexes occupied NOTCH4 chromatin and conferred endothelial cell-specific transcription. Vascular angiogenic factors activated AP-1 and reprogrammed the endogenous NOTCH4 gene in HeLa cells from a repressed to a transcriptionally active state. These results reveal an AP-1-Notch4 pathway, which we propose to be crucial for transducing angiogenic signals and to be deregulated upon aberrant signal transduction in cancer.


Molecular and Cellular Biology | 2008

Abnormal Heart Development and Lung Remodeling in Mice Lacking the Hypoxia-Inducible Factor-Related Basic Helix-Loop-Helix PAS Protein NEPAS

Toshiharu Yamashita; Osamu Ohneda; Masumi Nagano; Motoyuki Iemitsu; Yuichi Makino; Hirotoshi Tanaka; Takashi Miyauchi; Katsutoshi Goto; Kinuko Ohneda; Yoshiaki Fujii-Kuriyama; Lorenz Poellinger; Masayuki Yamamoto

ABSTRACT Hypoxia-inducible factors (HIFs) are crucial for oxygen homeostasis during both embryonic development and postnatal life. Here we show that a novel HIF family basic helix-loop-helix (bHLH) PAS (Per-Arnt-Sim) protein, which is expressed predominantly during embryonic and neonatal stages and thereby designated NEPAS (neonatal and embryonic PAS), acts as a negative regulator of HIF-mediated gene expression. NEPAS mRNA is derived from the HIF-3α gene by alternative splicing, replacing the first exon of HIF-3α with that of inhibitory PAS. NEPAS can dimerize with Arnt and exhibits only low levels of transcriptional activity, similar to that of HIF-3α. NEPAS suppressed reporter gene expression driven by HIF-1α and HIF-2α. By generating mice with a targeted disruption of the NEPAS/HIF-3α locus, we found that homozygous mutant mice (NEPAS/HIF-3α−/−) were viable but displayed enlargement of the right ventricle and impaired lung remodeling. The expression of endothelin 1 and platelet-derived growth factor β was increased in the lung endothelial cells of NEPAS/HIF-3α-null mice. These results demonstrate a novel regulatory mechanism in which the activities of HIF-1α and HIF-2α are negatively regulated by NEPAS in endothelial cells, which is pertinent to lung and heart development during the embryonic and neonatal stages.

Collaboration


Dive into the Osamu Ohneda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kinuko Ohneda

Takasaki University of Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge