Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oscar Cerda is active.

Publication


Featured researches published by Oscar Cerda.


Fems Microbiology Letters | 2003

Helicobacter pylori strain ATCC700392 encodes a methyl‐accepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate

Oscar Cerda; Ana Rivas; He¤ctor Toledo

Helicobacter pylori ATCC43504 responds chemotactically to aspartic acid and serine, but not to arginine, nor to sodium bicarbonate. In contrast, H. pylori ATCC700392 (strain 26695) shows chemotaxis to all four attractants. Open reading frame HP0099 from H. pylori 26695 is predicted to encode one of three methyl-accepting chemotaxis receptor proteins (MCPs). When Escherichia coli is transformed with a plasmid carrying HP0099 from strain 26695, the recombinants acquire chemotaxis to arginine, bicarbonate, and urea. In H. pylori 43504, the HP0099 gene is interrupted with a mini-IS605 insertion, which accounts for its inability to recognize arginine and bicarbonate as attractants. Together, these results argue that the H. pylori HP0099 gene encodes an MCP for arginine and bicarbonate.


Journal of Cell Biology | 2011

Cdk-mediated phosphorylation of the Kvβ2 auxiliary subunit regulates Kv1 channel axonal targeting.

Helene Vacher; Jae Won Yang; Oscar Cerda; Amapola Autillo-Touati; Bénédicte Dargent; James S. Trimmer

Phosphorylation of Kvβ2 releases Kv1 channels from microtubules to control their specific distribution at the axonal membrane.


Journal of Biological Chemistry | 2010

Hydrogen Peroxide Removes TRPM4 Current Desensitization Conferring Increased Vulnerability to Necrotic Cell Death

Felipe Simon; Elías Leiva-Salcedo; Ricardo Armisen; Ana Riveros; Oscar Cerda; Diego Varela; Ana Luisa Eguiguren; Pablo Olivero; Andrés Stutzin

Necrosis is associated with an increase in plasma membrane permeability, cell swelling, and loss of membrane integrity with subsequent release of cytoplasmic constituents. Severe redox imbalance by overproduction of reactive oxygen species is one of the main causes of necrosis. Here we demonstrate that H2O2 induces a sustained activity of TRPM4, a Ca2+-activated, Ca2+-impermeant nonselective cation channel resulting in an increased vulnerability to cell death. In HEK 293 cells overexpressing TRPM4, H2O2 was found to eliminate in a dose-dependent manner TRPM4 desensitization. Site-directed mutagenesis experiments revealed that the Cys1093 residue is crucial for the H2O2-mediated loss of desensitization. In HeLa cells, which endogenously express TRPM4, H2O2 elicited necrosis as well as apoptosis. H2O2-mediated necrosis but not apoptosis was abolished by replacement of external Na+ ions with sucrose or the non-permeant cation N-methyl-d-glucamine and by knocking down TRPM4 with a shRNA directed against TRPM4. Conversely, transient overexpression of TRPM4 in HeLa cells in which TRPM4 was previously silenced re-established vulnerability to H2O2-induced necrotic cell death. In addition, HeLa cells exposed to H2O2 displayed an irreversible loss of membrane potential, which was prevented by TRPM4 knockdown.


Journal of Biological Chemistry | 2011

Activity-dependent phosphorylation of neuronal Kv2.1 potassium channels by CDK5

Oscar Cerda; James S. Trimmer

Dynamic modulation of ion channel expression, localization, and/or function drives plasticity in intrinsic neuronal excitability. Voltage-gated Kv2.1 potassium channels are constitutively maintained in a highly phosphorylated state in neurons. Increased neuronal activity triggers rapid calcineurin-dependent dephosphorylation, loss of channel clustering, and hyperpolarizing shifts in voltage-dependent activation that homeostatically suppress neuronal excitability. These changes are reversible, such that rephosphorylation occurs after removal of excitatory stimuli. Here, we show that cyclin-dependent kinase 5 (CDK5), a Pro-directed Ser/Thr protein kinase, directly phosphorylates Kv2.1, and determines the constitutive level of Kv2.1 phosphorylation, the rapid increase in Kv2.1 phosphorylation upon acute blockade of neuronal activity, and the recovery of Kv2.1 phosphorylation after stimulus-induced dephosphorylation. We also demonstrate that although the phosphorylation state of Kv2.1 is also shaped by the activity of the PP1 protein phosphatase, the regulation of Kv2.1 phosphorylation by CDK5 is not mediated through the previously described regulation of PP1 activity by CDK5. Together, these studies support a novel role for CDK5 in regulating Kv2.1 channels through direct phosphorylation.


Neuroscience Letters | 2010

Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels

Oscar Cerda; James S. Trimmer

Phosphorylation is the most common and abundant post-translational modification to eukaryotic proteins, regulating a plethora of dynamic cellular processes. Here, we review and discuss recent advances in our knowledge of the breadth and importance of reversible phosphorylation in regulating the expression, localization and function of mammalian neuronal voltage-gated potassium (Kv) channels, key regulators of neuronal function. We highlight the role of modern mass spectrometric techniques and phosphospecific antibodies in revealing the extent and nature of phosphorylation at specific sites in Kv channels. We also emphasize the role of reversible phosphorylation in dynamically regulating diverse aspects of Kv channel biology. Finally, we discuss as important future directions the determination of the mechanistic basis for how altering phosphorylation state affects Kv channel expression, localization and function, the nature of macromolecular signaling complexes containing Kv channels and enzymes regulating their phosphorylation state, and the specific role of Kv channel phosphorylation in regulating neuronal function during physiological and pathophysiological events.


The Journal of General Physiology | 2011

Mining recent brain proteomic databases for ion channel phosphosite nuggets

Oscar Cerda; Je-Hyun Baek; James S. Trimmer

Voltage-gated ion channels underlie electrical activity of neurons and are dynamically regulated by diverse cell signaling pathways that alter their phosphorylation state. Recent global mass spectrometric–based analyses of the mouse brain phosphoproteome have yielded a treasure trove of new data as to the extent and nature of phosphorylation of numerous ion channel principal or α subunits in mammalian brain. Here we compile and review data on 347 phosphorylation sites (261 unique) on 42 different voltage-gated ion channel α subunits that were identified in these recent studies. Researchers in the ion channel field can now begin to explore the role of these novel in vivo phosphorylation sites in the dynamic regulation of the localization, activity, and expression of brain ion channels through multisite phosphorylation of their principal subunits.


Seminars in Cell & Developmental Biology | 2011

Mass spectrometry-based phosphoproteomics reveals multisite phosphorylation on mammalian brain voltage-gated sodium and potassium channels

Je Hyun Baek; Oscar Cerda; James S. Trimmer

Voltage-gated sodium and potassium channels underlie electrical activity of neurons, and are dynamically regulated by diverse cell signaling pathways that ultimately exert their effects by altering the phosphorylation state of channel subunits. Recent mass spectrometric-based studies have led to a new appreciation of the extent and nature of phosphorylation of these ion channels in mammalian brain. This has allowed for new insights into how neurons dynamically regulate the localization, activity and expression through multisite ion channel phosphorylation.


Microvascular Research | 2015

Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel

Daniela Sarmiento; Ignacio Montorfano; Oscar Cerda; Mónica Cáceres; Alvaro Becerra; Claudio Cabello-Verrugio; Alvaro A. Elorza; Claudia A. Riedel; Pablo Tapia; Luis Velasquez; Diego Varela; Felipe Simon

A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases.


The Journal of Comparative Neurology | 2014

Cell type-specific spatial and functional coupling between mammalian brain Kv2.1 K+ channels and ryanodine receptors.

Danielle Mandikian; Elke Bocksteins; Laxmi Kumar Parajuli; Hannah I. Bishop; Oscar Cerda; Ryuichi Shigemoto; James S. Trimmer

The Kv2.1 voltage‐gated K+ channel is widely expressed throughout mammalian brain, where it contributes to dynamic activity‐dependent regulation of intrinsic neuronal excitability. Here we show that somatic plasma membrane Kv2.1 clusters are juxtaposed to clusters of intracellular ryanodine receptor (RyR) Ca2+‐release channels in mouse brain neurons, most prominently in medium spiny neurons (MSNs) of the striatum. Electron microscopy–immunogold labeling shows that in MSNs, plasma membrane Kv2.1 clusters are adjacent to subsurface cisternae, placing Kv2.1 in close proximity to sites of RyR‐mediated Ca2+ release. Immunofluorescence labeling in transgenic mice expressing green fluorescent protein in specific MSN populations reveals the most prominent juxtaposed Kv2.1:RyR clusters in indirect pathway MSNs. Kv2.1 in both direct and indirect pathway MSNs exhibits markedly lower levels of labeling with phosphospecific antibodies directed against the S453, S563, and S603 phosphorylation site compared with levels observed in neocortical neurons, although labeling for Kv2.1 phosphorylation at S563 was significantly lower in indirect pathway MSNs compared with those in the direct pathway. Finally, acute stimulation of RyRs in heterologous cells causes a rapid hyperpolarizing shift in the voltage dependence of activation of Kv2.1, typical of Ca2+/calcineurin‐dependent Kv2.1 dephosphorylation. Together, these studies reveal that striatal MSNs are distinct in their expression of clustered Kv2.1 at plasma membrane sites juxtaposed to intracellular RyRs, as well as in Kv2.1 phosphorylation state. Differences in Kv2.1 expression and phosphorylation between MSNs in direct and indirect pathways provide a cell‐ and circuit‐specific mechanism for coupling intracellular Ca2+ release to phosphorylation‐dependent regulation of Kv2.1 to dynamically impact intrinsic excitability. J. Comp. Neurol. 522:3555–3574, 2014.


PLOS ONE | 2015

TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility

Mónica Cáceres; Liliana Ortiz; Tatiana Recabarren; Aníbal Romero; Alicia Colombo; Elías Leiva-Salcedo; Diego Varela; José Rivas; Ian Victor Silva; Diego Morales; Camilo Campusano; Oscar Almarza; Felipe Simon; Héctor Toledo; Kang Sik Park; James S. Trimmer; Oscar Cerda

Cellular migration and contractility are fundamental processes that are regulated by a variety of concerted mechanisms such as cytoskeleton rearrangements, focal adhesion turnover, and Ca2+ oscillations. TRPM4 is a Ca2+-activated non-selective cationic channel (Ca2+-NSCC) that conducts monovalent but not divalent cations. Here, we used a mass spectrometry-based proteomics approach to identify putative TRPM4-associated proteins. Interestingly, the largest group of these proteins has actin cytoskeleton-related functions, and among these nine are specifically annotated as focal adhesion-related proteins. Consistent with these results, we found that TRPM4 localizes to focal adhesions in cells from different cellular lineages. We show that suppression of TRPM4 in MEFs impacts turnover of focal adhesions, serum-induced Ca2+ influx, focal adhesion kinase (FAK) and Rac activities, and results in reduced cellular spreading, migration and contractile behavior. Finally, we demonstrate that the inhibition of TRPM4 activity alters cellular contractility in vivo, affecting cutaneous wound healing. Together, these findings provide the first evidence, to our knowledge, for a TRP channel specifically localized to focal adhesions, where it performs a central role in modulating cellular migration and contractility.

Collaboration


Dive into the Oscar Cerda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mónica Cáceres

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge