Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oscar Conchillo-Solé is active.

Publication


Featured researches published by Oscar Conchillo-Solé.


BMC Bioinformatics | 2007

AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides

Oscar Conchillo-Solé; Natalia S. de Groot; Francesc X. Avilés; Josep Vendrell; Xavier Daura; Salvador Ventura

BackgroundProtein aggregation correlates with the development of several debilitating human disorders of growing incidence, such as Alzheimers and Parkinsons diseases. On the biotechnological side, protein production is often hampered by the accumulation of recombinant proteins into aggregates. Thus, the development of methods to anticipate the aggregation properties of polypeptides is receiving increasing attention. AGGRESCAN is a web-based software for the prediction of aggregation-prone segments in protein sequences, the analysis of the effect of mutations on protein aggregation propensities and the comparison of the aggregation properties of different proteins or protein sets.ResultsAGGRESCAN is based on an aggregation-propensity scale for natural amino acids derived from in vivo experiments and on the assumption that short and specific sequence stretches modulate protein aggregation. The algorithm is shown to identify a series of protein fragments involved in the aggregation of disease-related proteins and to predict the effect of genetic mutations on their deposition propensities. It also provides new insights into the differential aggregation properties displayed by globular proteins, natively unfolded polypeptides, amyloidogenic proteins and proteins found in bacterial inclusion bodies.ConclusionBy identifying aggregation-prone segments in proteins, AGGRESCAN http://bioinf.uab.es/aggrescan/ shall facilitate (i) the identification of possible therapeutic targets for anti-depositional strategies in conformational diseases and (ii) the anticipation of aggregation phenomena during storage or recombinant production of bioactive polypeptides or polypeptide sets.Protein aggregation correlates with the development of several debilitating human disorders of growing incidence, such as Alzheimers and Parkinsons diseases. On the biotechnological side, protein production is often hampered by the accumulation of recombinant proteins into aggregates. Thus, the development of methods to anticipate the aggregation properties of polypeptides is receiving increasing attention. AGGRESCAN is a web-based software for the prediction of aggregation-prone segments in protein sequences, the analysis of the effect of mutations on protein aggregation propensities and the comparison of the aggregation properties of different proteins or protein sets. AGGRESCAN is based on an aggregation-propensity scale for natural amino acids derived from in vivo experiments and on the assumption that short and specific sequence stretches modulate protein aggregation. The algorithm is shown to identify a series of protein fragments involved in the aggregation of disease-related proteins and to predict the effect of genetic mutations on their deposition propensities. It also provides new insights into the differential aggregation properties displayed by globular proteins, natively unfolded polypeptides, amyloidogenic proteins and proteins found in bacterial inclusion bodies. By identifying aggregation-prone segments in proteins, AGGRESCAN http://bioinf.uab.es/aggrescan/ shall facilitate (i) the identification of possible therapeutic targets for anti-depositional strategies in conformational diseases and (ii) the anticipation of aggregation phenomena during storage or recombinant production of bioactive polypeptides or polypeptide sets.


ACS Nano | 2014

In vivo architectonic stability of fully de novo designed protein-only nanoparticles.

María Virtudes Céspedes; Ugutz Unzueta; Witold I. Tatkiewicz; Alejandro Sánchez-Chardi; Oscar Conchillo-Solé; Patricia Álamo; Zhikun Xu; Isolda Casanova; José Luis Corchero; Mireia Pesarrodona; Juan Cedano; Xavier Daura; Imma Ratera; Jaume Veciana; Neus Ferrer-Miralles; Esther Vázquez; Antonio Villaverde; Ramon Mangues

The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.


Advanced Materials | 2015

Bottom-Up Instructive Quality Control in the Biofabrication of Smart Protein Materials.

Fabián Rueda; María Virtudes Céspedes; Oscar Conchillo-Solé; Alejandro Sánchez-Chardi; Joaquin Seras-Franzoso; Rafael Cubarsi; Alberto Gallardo; Mireia Pesarrodona; Neus Ferrer-Miralles; Xavier Daura; Esther Vázquez; Elena García-Fruitós; Ramon Mangues; Ugutz Unzueta; Antonio Villaverde

The impact of cell factory quality control on material properties is a neglected but critical issue in the fabrication of protein biomaterials, which are unique in merging structure and function. The molecular chaperoning of protein conformational status is revealed here as a potent molecular instructor of the macroscopic properties of self-assembling, cell-targeted protein nanoparticles, including biodistribution upon in vivo administration.


FEBS Journal | 2015

From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK.

Louise J. Gourlay; Rachael J. Thomas; Claudio Peri; Oscar Conchillo-Solé; Mario Ferrer-Navarro; Arnone Nithichanon; Jordi Vila; Xavier Daura; Ganjana Lertmemongkolchai; Richard W. Titball; Giorgio Colombo; Martino Bolognesi

Melioidosis, caused by the Gram‐negative bacterium Burkholderia pseudomallei, is a potentially fatal infection that is endemic in Southeast Asia and Northern Australia that is poorly controlled by antibiotics. Research efforts to identify antigenic components for a melioidosis vaccine have led to the identification of several proteins, including subunits forming the flagella that mediate bacterial motility, host colonization, and virulence. This study focuses on the B. pseudomallei flagellar hook‐associated protein (FlgKBp), and provides the first insights into the 3D structure of FlgK proteins as targets for structure‐based antigen engineering. The FlgKBp crystal structure (presented here at 1.8‐Å resolution) reveals a multidomain fold, comprising two small β‐domains protruding from a large elongated α‐helical bundle core. The evident structural similarity to flagellin, the flagellar filament subunit protein, suggests that, depending on the bacterial species, flagellar hook‐associated proteins are likely to show a conserved, elongated α‐helical bundle scaffold coupled to a variable number of smaller domains. Furthermore, we present immune serum recognition data confirming, in agreement with previous findings, that recovered melioidosis patients produce elevated levels of antibodies against FlgKBp, in comparison with seronegative and seropositive healthy subjects. Moreover, we show that FlgKBp has cytotoxic effects on cultured murine macrophages, suggesting an important role in bacterial pathogenesis. Finally, computational epitope prediction methods applied to the FlgKBp crystal structure, coupled with in vitro mapping, allowed us to predict three antigenic regions that locate to discrete protein domains. Taken together, our results point to FlgKBp as a candidate for the design and production of epitope‐containing subunits/domains as potential vaccine components.


Nucleic Acids Research | 2015

PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores

Rafael Zambrano; Oscar Conchillo-Solé; Valentin Iglesias; Ricard Illa; Frederic Rousseau; Joost Schymkowitz; Raimon Sabaté; Xavier Daura; Salvador Ventura

Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

RGD-based cell ligands for cell-targeted drug delivery act as potent trophic factors.

Joan Domingo-Espín; Valérie Petegnief; Núria de Vera; Oscar Conchillo-Solé; Paolo Saccardo; Ugutz Unzueta; Esther Vázquez; Juan Cedano; Luciana Negro; Xavier Daura; Hugo Peluffo; Anna M. Planas; Antonio Villaverde; Neus Ferrer-Miralles

UNLABELLED Integrin-binding, Arg-Gly-Asp (RGD)-containing peptides are the most widely used agents to deliver drugs, nanoparticles, and imaging agents. Although in nature, several protein-mediated signal transduction events depend on RGD motifs, the potential of RGD-empowered materials in triggering undesired cell-signaling cascades has been neglected. Using an RGD-functionalized protein nanoparticle, we show here that the RGD motif acts as a powerful trophic factor, supporting extracellular signal-regulated kinase 1/2 (ERK1/2)-linked cell proliferation and partial differentiation of PC12 cells, a neuronlike model. FROM THE CLINICAL EDITOR This work focuses on RGD peptides, which are among the most commonly used tags for targeted drug delivery. They also promote protoneurite formation and expression of neuronal markers (MAP2) in model PC12 cells, which is an unexpected but relevant event in the functionalization of drugs and their nanocarriers.


ACS Chemical Biology | 2015

Structure-based design of a B cell antigen from B. pseudomallei.

Davide Gaudesi; Claudio Peri; Giacomo Quilici; Alessandro Gori; Mario Ferrer-Navarro; Oscar Conchillo-Solé; Rachael J. Thomas; Arnone Nithichanon; Ganjana Lertmemongkolchai; Richard W. Titball; Xavier Daura; Giorgio Colombo; Giovanna Musco

Burkholderia pseudomallei is the etiological agent of melioidosis, a severe endemic disease in South-East Asia, causing septicemia and organ failure with high mortality rates. Current treatments and diagnostic approaches are largely ineffective. The development of new diagnostic tools and vaccines toward effective therapeutic opportunities against B. pseudomallei is therefore an urgent priority. In the framework of a multidisciplinary project tackling melioidosis through reverse and structural vaccinology, BPSL1050 was identified as a candidate for immunodiagnostic and vaccine development based on its reactivity against the sera of melioidosis patients. We determined its NMR solution structure and dynamics, and by novel computational methods we predicted immunogenic epitopes that once synthesized were able to elicit the production of antibodies inducing the agglutination of the bacterium and recognizing both BPSL1050 and B. pseudomallei crude extracts. Overall, these results hold promise for novel chemical biology approaches in the discovery of new diagnostic and prophylactic tools against melioidosis.


Biofabrication | 2016

Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria

Mireia Pesarrodona; Yolanda Fernández; Laia Foradada; Alejandro Sánchez-Chardi; Oscar Conchillo-Solé; Ugutz Unzueta; Zhikun Xu; Mónica Roldán; Sandra Villegas; Neus Ferrer-Miralles; Simó Schwartz; Ursula Rinas; Xavier Daura; Ibane Abasolo; Esther Vázquez; Antonio Villaverde

Biofabrication is attracting interest as a means to produce nanostructured functional materials because of its operational versatility and full scalability. Materials based on proteins are especially appealing, as the structure and functionality of proteins can be adapted by genetic engineering. Furthermore, strategies and tools for protein production have been developed and refined steadily for more than 30 years. However, protein conformation and therefore activity might be sensitive to production conditions. Here, we have explored whether the downstream strategy influences the structure and biological activities, in vitro and in vivo, of a self-assembling, CD44-targeted protein-only nanoparticle produced in Escherichia coli. This has been performed through the comparative analysis of particles built from soluble protein species or protein versions obtained by in vitro protein extraction from inclusion bodies, through mild, non-denaturing procedures. These methods have been developed recently as a convenient alternative to the use of toxic chaotropic agents for protein resolubilization from protein aggregates. The results indicate that the resulting material shows substantial differences in its physicochemical properties and its biological performance at the systems level, and that its building blocks are sensitive to the particular protein source.


Journal of Proteomics | 2016

Proteomic analysis of outer membrane proteins and vesicles of a clinical isolate and a collection strain of Stenotrophomonas maltophilia

Mario Ferrer-Navarro; Gerard Torrent; Elías Mongiardini; Oscar Conchillo-Solé; Isidre Gibert; Xavier Daura

UNLABELLED Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence that displays a high genomic diversity, complicating the study of its pathogenicity, virulence and resistance factors. The interaction of bacterial pathogens with host cells is largely mediated by outer membrane proteins (OMPs). Indeed, several OMPs of Gram-negative bacteria have been recognized as important virulence factors and targets for host immune recognition or to be involved in mechanisms of resistance to antimicrobials. OMPs are also present in outer membrane vesicles (OMVs), which bacteria constitutively secrete to the extracellular milieu and are essential for bacterial survival and pathogenesis. Here, we report the characterization of the OMP and native OMV subproteomes of a clinical isolate (M30) and a collection strain (ATCC13637) of S. maltophilia. We had previously shown that the ATCC13637 strain has an attenuated phenotype in a zebrafish model of infection, as well as a distinct susceptibility profile against a panel of antimicrobials. The protein profiles of the OMP and OMV subproteomes of these two strains and their differences consequently point at pathogenesis, virulence or resistance proteins, such as two variants of the quorum-sensing factor Ax21 that are found to be highly abundant in the OMP fraction and exported to OMVs. BIOLOGICAL SIGNIFICANCE Stenotrophomonas maltophilia is rapidly climbing positions in the ranking of multidrug-resistant pathogens that are frequently isolated in hospital environments. Being an emerging human pathogen, the knowledge on the factors determining the pathogenicity, virulence and resistance traits of this microorganism is still scarce. Outer membrane proteins (OMPs) and vesicles (OMVs) are key elements for the interaction of Gram-negative bacteria with their environment -including the host-and have fundamental roles in both infection and resistance processes. The present study sets a first basis for a phenotype-dependent characterisation of the OMP subproteome of S. maltophilia and complements very recent work on the OMV subproteome of this species. The variability found among even two strains demonstrates once more that the analysis of genotypically and phenotypically distinct isolates under various conditions will be required before we can draw a significant picture of the OMP and OMV subproteomes of S. maltophilia.


Genome Announcements | 2014

Draft Genome Sequence of Stenotrophomonas maltophilia Strain M30, Isolated from a Chronic Pressure Ulcer in an Elderly Patient

Pol Huedo; Oscar Conchillo-Solé; Daniel Yero; Sònia Martínez-Servat; Xavier Daura; Isidre Gibert

ABSTRACT Stenotrophomonas maltophilia is an emerging opportunistic pathogen with an increasing prevalence of multidrug-resistant strains. Here, we report the draft genome sequence of S. maltophilia strain M30, isolated from a pressure ulcer in an elderly patient.

Collaboration


Dive into the Oscar Conchillo-Solé's collaboration.

Top Co-Authors

Avatar

Xavier Daura

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Neus Ferrer-Miralles

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Alejandro Sánchez-Chardi

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mario Ferrer-Navarro

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Mireia Pesarrodona

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge