Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oscar Diaz-Horta is active.

Publication


Featured researches published by Oscar Diaz-Horta.


PLOS ONE | 2012

Whole-Exome Sequencing Efficiently Detects Rare Mutations in Autosomal Recessive Nonsyndromic Hearing Loss

Oscar Diaz-Horta; Duygu Duman; Joseph Foster; Asli Sirmaci; Michael Gonzalez; Nejat Mahdieh; Nikou Fotouhi; Mortaza Bonyadi; Filiz Başak Cengiz; Ibis Menendez; Rick H. Ulloa; Yvonne J. K. Edwards; Stephan Züchner; Susan H. Blanton; Mustafa Tekin

Identification of the pathogenic mutations underlying autosomal recessive nonsyndromic hearing loss (ARNSHL) is difficult, since causative mutations in 39 different genes have so far been reported. After excluding mutations in the most common ARNSHL gene, GJB2, via Sanger sequencing, we performed whole-exome sequencing (WES) in 30 individuals from 20 unrelated multiplex consanguineous families with ARNSHL. Agilent SureSelect Human All Exon 50 Mb kits and an Illumina Hiseq2000 instrument were used. An average of 93%, 84% and 73% of bases were covered to 1X, 10X and 20X within the ARNSHL-related coding RefSeq exons, respectively. Uncovered regions with WES included those that are not targeted by the exome capture kit and regions with high GC content. Twelve homozygous mutations in known deafness genes, of which eight are novel, were identified in 12 families: MYO15A-p.Q1425X, -p.S1481P, -p.A1551D; LOXHD1-p.R1494X, -p.E955X; GIPC3-p.H170N; ILDR1-p.Q274X; MYO7A-p.G2163S; TECTA-p.Y1737C; TMC1-p.S530X; TMPRSS3-p.F13Lfs*10; TRIOBP-p.R785Sfs*50. Each mutation was within a homozygous run documented via WES. Sanger sequencing confirmed co-segregation of the mutation with deafness in each family. Four rare heterozygous variants, predicted to be pathogenic, in known deafness genes were detected in 12 families where homozygous causative variants were already identified. Six heterozygous variants that had similar characteristics to those abovementioned variants were present in 15 ethnically-matched individuals with normal hearing. Our results show that rare causative mutations in known ARNSHL genes can be reliably identified via WES. The excess of heterozygous variants should be considered during search for causative mutations in ARNSHL genes, especially in small-sized families.


American Journal of Human Genetics | 2012

Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss

Kemal O. Yariz; Duygu Duman; Celia Zazo Seco; Julia E. Dallman; Mingqian Huang; Theo A. Peters; Asli Sirmaci; Na Lu; Margit Schraders; Isaac Skromne; Jaap Oostrik; Oscar Diaz-Horta; Juan I. Young; Suna Tokgoz-Yilmaz; Ozlem Konukseven; Hashem Shahin; Lisette Hetterschijt; Moien Kanaan; Anne M.M. Oonk; Yvonne J. K. Edwards; Huawei Li; Semra Atalay; Susan H. Blanton; Alexandra DeSmidt; Xue Zhong Liu; R.J.E. Pennings; Zhongmin Lu; Zheng-Yi Chen; Hannie Kremer; Mustafa Tekin

Hereditary hearing loss is characterized by a high degree of genetic heterogeneity. Here we present OTOGL mutations, a homozygous one base pair deletion (c.1430 delT) causing a frameshift (p.Val477Glufs(∗)25) in a large consanguineous family and two compound heterozygous mutations, c.547C>T (p.Arg183(∗)) and c.5238+5G>A, in a nonconsanguineous family with moderate nonsyndromic sensorineural hearing loss. OTOGL maps to the DFNB84 locus at 12q21.31 and encodes otogelin-like, which has structural similarities to the epithelial-secreted mucin protein family. We demonstrate that Otogl is expressed in the inner ear of vertebrates with a transcription level that is high in embryonic, lower in neonatal, and much lower in adult stages. Otogelin-like is localized to the acellular membranes of the cochlea and the vestibular system and to a variety of inner ear cells located underneath these membranes. Knocking down of otogl with morpholinos in zebrafish leads to sensorineural hearing loss and anatomical changes in the inner ear, supporting that otogelin-like is essential for normal inner ear function. We propose that OTOGL mutations affect the production and/or function of acellular structures of the inner ear, which ultimately leads to sensorineural hearing loss.


Proceedings of the National Academy of Sciences of the United States of America | 2014

FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing

Oscar Diaz-Horta; Asli Subasioglu-Uzak; M’hamed Grati; Alexandra DeSmidt; Joseph Foster; Lei Cao; Guney Bademci; Suna Tokgoz-Yilmaz; Duygu Duman; F. Basak Cengiz; Clemer Abad; Rahul Mittal; Susan H. Blanton; Xue Zhong Liu; Amjad Farooq; Katherina Walz; Zhongmin Lu; Mustafa Tekin

Significance Concerted action of thousands of proteins is required for the inner ear to convert acoustic waves into electrical signals for hearing. Many of these proteins are currently unknown. This study uses a genetic approach to identify FAM65B as a gene mutated in a family with sensorineural hearing loss. Characterization of FAM65B shows that it is a component of the plasma membrane of the stereocilia hair bundle, the essential organelle in which electrical signals originate in the inner ear. Thus, FAM65B is a previously unrecognized component of the inner ear that is crucial for hearing. In a large consanguineous Turkish kindred with recessive nonsyndromic, prelingual, profound hearing loss, we identified in the gene FAM65B (MIM611410) a splice site mutation (c.102-1G>A) that perfectly cosegregates with the phenotype in the family. The mutation leads to exon skipping and deletion of 52-amino acid residues of a PX membrane localization domain. FAM65B is known to be involved in myotube formation and in regulation of cell adhesion, polarization, and migration. We show that wild-type Fam65b is expressed during embryonic and postnatal development stages in murine cochlea, and that the protein localizes to the plasma membranes of the stereocilia of inner and outer hair cells of the inner ear. The wild-type protein targets the plasma membrane, whereas the mutant protein accumulates in cytoplasmic inclusion bodies and does not reach the membrane. In zebrafish, knockdown of fam65b leads to significant reduction of numbers of saccular hair cells and neuromasts and to hearing loss. We conclude that FAM65B is a plasma membrane-associated protein of hair cell stereocilia that is essential for hearing.


Human Genetics | 2014

De novo ACTG2 mutations cause congenital distended bladder, microcolon, and intestinal hypoperistalsis

Willa Thorson; Oscar Diaz-Horta; Joseph Foster; Michail Spiliopoulos; Ruben Quintero; Amjad Farooq; Susan H. Blanton; Mustafa Tekin

Megacystis–microcolon–intestinal hypoperistalsis syndrome (MMIHS) is characterized by prenatal-onset distended urinary bladder with functional intestinal obstruction, requiring extensive surgical intervention for survival. While it is believed to be an autosomal recessive disorder, most cases are sporadic. Through whole-exome sequencing in a child with MMIHS, we identified a de novo mutation, p.R178L, in the gene encoding the smooth muscle gamma-2 actin, ACTG2. We subsequently detected another de novo ACTG2 mutation, p.R178C, in an additional child with MMIHS. Actg2 transcripts were primarily found in murine urinary bladder and intestinal tissues. Structural analysis and functional experiments suggested that both ACTG2 mutants interfere with proper polymerization of ACTG2 into thin filaments, leading to impaired contractility of the smooth muscle. In conclusion, our study suggests a pathogenic mechanism for MMIHS by identifying causative ACTG2 mutations.


Arthritis & Rheumatism | 2013

DNASE1L3 Mutations in Hypocomplementemic Urticarial Vasculitis Syndrome

Z. Birsin Özçakar; Joseph Foster; Oscar Diaz-Horta; Ozgur Kasapcopur; Yao Shan Fan; Fatoş Yalçınkaya; Mustafa Tekin

OBJECTIVE Hypocomplementemic urticarial vasculitis syndrome (HUVS) is characterized by recurrent urticaria along with dermal vasculitis, arthritis, and glomerulonephritis. Systemic lupus erythematosus (SLE) develops in >50% of patients with HUVS, although the pathogenesis is unknown. The aim of this study was to identify the causative DNA mutations in 2 families with autosomal-recessive HUVS, in order to reveal the pathogenesis and facilitate the laboratory diagnosis. METHODS Autozygosity mapping was combined with whole-exome sequencing. RESULTS In a family with 3 affected children, we identified a homozygous frameshift mutation, c.289_290delAC, in DNASE1L3. We subsequently identified another homozygous DNASE1L3 mutation leading to exon skipping, c.320+4delAGTA, in an unrelated family. The detected mutations led to loss of function, via either nonsense-mediated messenger RNA decay or abolished endonuclease activity, as demonstrated by a plasmid nicking assay. CONCLUSION These results show that HUVS is caused by mutations in DNASE1L3, encoding an endonuclease that previously has been associated with SLE.


Genetics in Medicine | 2016

Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deafness in a large multiethnic cohort

Guney Bademci; Joseph Foster; Nejat Mahdieh; Mortaza Bonyadi; Duygu Duman; F. Basak Cengiz; Ibis Menendez; Oscar Diaz-Horta; Atefeh Shirkavand; Sirous Zeinali; Asli Subasioglu; Suna Tokgoz-Yilmaz; Fabiola Huesca-Hernandez; María de la Luz Arenas-Sordo; Juan Dominguez-Aburto; Edgar Hernández-Zamora; Paola Montenegro; Rosario Paredes; Germania Moreta; Rodrigo Vinueza; Franklin Villegas; Santiago Mendoza-Benitez; Shengru Guo; Nazım Bozan; Tulay Tos; Armagan Incesulu; Gonca Sennaroglu; Susan H. Blanton; Hatice Öztürkmen-Akay; Muzeyyen Yildirim-Baylan

Purpose:Autosomal recessive nonsyndromic deafness (ARNSD) is characterized by a high degree of genetic heterogeneity, with reported mutations in 58 different genes. This study was designed to detect deafness-causing variants in a multiethnic cohort with ARNSD by using whole-exome sequencing (WES).Methods:After excluding mutations in the most common gene, GJB2, we performed WES in 160 multiplex families with ARNSD from Turkey, Iran, Mexico, Ecuador, and Puerto Rico to screen for mutations in all known ARNSD genes.Results:We detected ARNSD-causing variants in 90 (56%) families, 54% of which had not been previously reported. Identified mutations were located in 31 known ARNSD genes. The most common genes with mutations were MYO15A (13%), MYO7A (11%), SLC26A4 (10%), TMPRSS3 (9%), TMC1 (8%), ILDR1 (6%), and CDH23 (4%). Nine mutations were detected in multiple families with shared haplotypes, suggesting founder effects.Conclusion:We report on a large multiethnic cohort with ARNSD in which comprehensive analysis of all known ARNSD genes identifies causative DNA variants in 56% of the families. In the remaining families, WES allows us to search for causative variants in novel genes, thus improving our ability to explain the underlying etiology in more families.Genet Med 18 4, 364–371.


Journal of Clinical Investigation | 2013

SLITRK6 mutations cause myopia and deafness in humans and mice

Mustafa Tekin; Barry A. Chioza; Yoshifumi Matsumoto; Oscar Diaz-Horta; Harold E. Cross; Duygu Duman; Haris Kokotas; Heather L. Moore-Barton; Kazuto Sakoori; Maya Ota; Yuri S. Odaka; Joseph Foster; F. Basak Cengiz; Suna Tokgoz-Yilmaz; Oya Tekeli; Maria Grigoriadou; Michael B. Petersen; Ajith Sreekantan-Nair; Kay Gurtz; Xia Juan Xia; Arti Pandya; Michael A. Patton; Juan I. Young; Jun Aruga; Andrew H. Crosby

Myopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.R181X, p.S297X, and p.Q414X) in SLIT and NTRK-like family, member 6 (SLITRK6), a leucine-rich repeat domain transmembrane protein. All 3 mutant SLITRK6 proteins displayed defective cell surface localization. High-resolution MRI of WT and Slitrk6-deficient mouse eyes revealed axial length increase in the mutant (the endophenotype of myopia). Additionally, mutant mice exhibited auditory function deficits that mirrored the human phenotype. Histological investigation of WT and Slitrk6-deficient mouse retinas in postnatal development indicated a delay in synaptogenesis in Slitrk6-deficient animals. Taken together, our results showed that SLITRK6 plays a crucial role in the development of normal hearing as well as vision in humans and in mice and that its disruption leads to a syndrome characterized by severe myopia and deafness.


Human Genetics | 2015

Characterization of ANKRD11 mutations in humans and mice related to KBG syndrome.

Katherina Walz; Devon Cohen; Paul M. Neilsen; I I Joseph Foster; Francesco Brancati; Korcan Demir; Richard Fisher; Michelle Moffat; Nienke E. Verbeek; Kathrine Bjørgo; Adriana Lo Castro; Paolo Curatolo; Giuseppe Novelli; Clemer Abad; Cao Lei; Lily Zhang; Oscar Diaz-Horta; Juan I. Young; David F. Callen; Mustafa Tekin

Mutations in ANKRD11 have recently been reported to cause KBG syndrome, an autosomal dominant condition characterized by intellectual disability (ID), behavioral problems, and macrodontia. To understand the pathogenic mechanism that relates ANKRD11 mutations with the phenotype of KBG syndrome, we studied the cellular characteristics of wild-type ANKRD11 and the effects of mutations in humans and mice. We show that the abundance of wild-type ANKRD11 is tightly regulated during the cell cycle, and that the ANKRD11 C-terminus is required for the degradation of the protein. Analysis of 11 pathogenic ANKRD11 variants in humans, including six reported in this study, and one reported in the Ankrd11Yod/+ mouse, shows that all mutations affect the C-terminal regions and that the mutant proteins accumulate aberrantly. In silico analysis shows the presence of D-box sequences that are signals for proteasome degradation. We suggest that ANKRD11 C-terminus plays an important role in regulating the abundance of the protein, and a disturbance of the protein abundance due to the mutations leads to KBG syndrome.


Genetic Testing and Molecular Biomarkers | 2014

Identification of Copy Number Variants Through Whole-Exome Sequencing in Autosomal Recessive Nonsyndromic Hearing Loss

Guney Bademci; Oscar Diaz-Horta; Shengru Guo; Duygu Duman; Derek Van Booven; Joseph Foster; Filiz Başak Cengiz; Susan H. Blanton; Mustafa Tekin

Genetic variants account for more than half of the cases with congenital or prelingual onset hearing loss. Autosomal recessive nonsyndromic hearing loss (ARNSHL) is the most common subgroup. Whole-exome sequencing (WES) has been shown to be effective detecting deafness-causing single-nucleotide variants (SNVs) and insertion/deletions (INDELs). After analyzing the WES data for causative SNVs or INDELs involving previously reported deafness genes in 78 families with ARNSHL, we searched for copy number variants (CNVs) through two different tools in 24 families that remained unresolved. We detected large homozygous deletions in STRC and OTOA in single families. Thus, causative CNVs in known deafness genes explain 2 out of 78 (2.6%) families in our sample set. We conclude that CNVs can be reliably detected through WES and should be the part of pipelines used to clarify genetic basis of hearing loss.


American Journal of Medical Genetics Part A | 2012

GPSM2 mutations in Chudley-McCullough syndrome

Oscar Diaz-Horta; Asli Sirmaci; Dan Doherty; Walter E. Nance; Kathleen S. Arnos; Arti Pandya; Mustafa Tekin

GPSM2 Mutations in Chudley–McCullough Syndrome Oscar Diaz-Horta, Asli Sirmaci, Dan Doherty, Walter Nance, Kathleen Arnos, Arti Pandya, and Mustafa Tekin* Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington Department of Human and Molecular Genetics, Virginia, Commonwealth University, Richmond, Virginia Department of Biology, Gallaudet University, Washington, District of Columbia

Collaboration


Dive into the Oscar Diaz-Horta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge