Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oscar Godoy is active.

Publication


Featured researches published by Oscar Godoy.


Functional Ecology | 2015

Community assembly, coexistence and the environmental filtering metaphor

Nathan J. B. Kraft; Peter B. Adler; Oscar Godoy; Emily C. James; Steve Fuller; Jonathan M. Levine

Summary One of the most pervasive concepts in the study of community assembly is the metaphor of the environmental filter, which refers to abiotic factors that prevent the establishment or persistence of species in a particular location. The metaphor has its origins in the study of community change during succession and in plant community dynamics, although it has gained considerable attention recently as part of a surge of interest in functional trait and phylogenetic-based approaches to the study of communities. While the filtering metaphor has clear utility in some circumstances, it has been challenging to reconcile the environmental filtering concept with recent developments in ecological theory related to species coexistence. These advances suggest that the evidence used in many studies to assess environmental filtering is insufficient to distinguish filtering from the outcome of biotic interactions. We re-examine the environmental filtering metaphor from the perspective of coexistence theory. In an effort to move the discussion forward, we present a simple framework for considering the role of the environment in shaping community membership, review the literature to document the evidence typically used in environmental filtering studies and highlight research challenges to address in coming years. The current usage of the environmental filtering term in empirical studies likely overstates the role abiotic tolerances play in shaping community structure. We recommend that the term ‘environmental filtering’ only be used to refer to cases where the abiotic environment prevents establishment or persistence in the absence of biotic interactions, although only 15% of the studies in our review presented such evidence. Finally, we urge community ecologists to consider additional mechanisms aside from environmental filtering by which the abiotic environment can shape community pattern.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Plant functional traits and the multidimensional nature of species coexistence

Nathan J. B. Kraft; Oscar Godoy; Jonathan M. Levine

Significance Biologists have long understood that differences between species in traits such as bill shape or rooting depth can maintain diversity in communities by promoting specialization and reducing competition. Here we test the assumption that phenotypic differences drive the stabilizing niche differences that promote coexistence. Using advances in ecological theory and detailed experiments we quantify average fitness and stabilizing niche differences between 102 plant species pairs and relate these differences to 11 functional traits. Individual traits were correlated with fitness differences that drive competitive exclusion but not stabilizing niche differences that promote coexistence. Stabilizing niche differences could only be described by combinations of traits, representing differentiation in multiple dimensions. This challenges the simplistic use of trait patterns to infer community assembly. Understanding the processes maintaining species diversity is a central problem in ecology, with implications for the conservation and management of ecosystems. Although biologists often assume that trait differences between competitors promote diversity, empirical evidence connecting functional traits to the niche differences that stabilize species coexistence is rare. Obtaining such evidence is critical because traits also underlie the average fitness differences driving competitive exclusion, and this complicates efforts to infer community dynamics from phenotypic patterns. We coupled field-parameterized mathematical models of competition between 102 pairs of annual plants with detailed sampling of leaf, seed, root, and whole-plant functional traits to relate phenotypic differences to stabilizing niche and average fitness differences. Single functional traits were often well correlated with average fitness differences between species, indicating that competitive dominance was associated with late phenology, deep rooting, and several other traits. In contrast, single functional traits were poorly correlated with the stabilizing niche differences that promote coexistence. Niche differences could only be described by combinations of traits, corresponding to differentiation between species in multiple ecological dimensions. In addition, several traits were associated with both fitness differences and stabilizing niche differences. These complex relationships between phenotypic differences and the dynamics of competing species argue against the simple use of single functional traits to infer community assembly processes but lay the groundwork for a theoretically justified trait-based community ecology.


Ecology Letters | 2014

What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta‐analysis

Pilar Castro-Díez; Oscar Godoy; Álvaro Alonso; Antonio Gallardo; Asunción Saldaña

Exotic plant invasions can notably alter the nitrogen (N) cycle of ecosystems. However, there is large variation in the magnitude and direction of their impact that remains unexplained. We present a structured meta-analysis of 100 papers, covering 113 invasive plant species with 345 cases of invasion across the globe and reporting impacts on N cycle-related metrics. We aim to explain heterogeneity of impacts by considering methodological aspects, properties of the invaded site and phylogenetic and functional characteristics of the invaders and the natives. Overall, plant invasions increased N pools and accelerated fluxes, even when excluding N-fixing invaders. The impact on N pools depended mainly on functional differences and was greater when the invasive plants and the natives differed in N-fixation ability, plant height and plant/leaf habit. Furthermore, the impact on N fluxes was related mainly to climate, being greater under warm and moist conditions. Our findings show that more functionally distant invaders occurring in mild climates are causing the strongest alterations to the N cycle.


Annals of Botany | 2009

Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems

Oscar Godoy; Fernando Valladares; Pilar Castro-Díez

BACKGROUND AND AIMS Flowering phenology is a potentially important component of success of alien species, since elevated fecundity may enhance invasiveness. The flowering patterns of invasive alien plant species and related natives were studied in three regions with Mediterranean-type climate: California, Spain and South Africas Cape region. METHODS A total of 227 invasive-native pairs were compared for seven character types across the regions, with each pair selected on the basis that they shared the same habitat type within a region, had a common growth form and pollination type, and belonged to the same family or genus. KEY RESULTS Invasive alien plant species have different patterns of flowering phenology from native species in the three regions. Whether the alien species flower earlier, later or at the same time as natives depends on the climatic regime in the native range of the aliens and the proportion of species in the invasive floras originating from different regions. Species invading at least two of the regions displayed the same flowering pattern, showing that flowering phenology is a conservative trait. Invasive species with native ranges in temperate climates flower earlier than natives, those from Mediterranean-type climates at the same time, and species from tropical climates flower later. In California, where the proportion of invaders from the Mediterranean Basin is high, the flowering pattern did not differ between invasive and native species, whereas in Spain the high proportion of tropical species results in a later flowering than natives, and in the Cape region early flowering than natives was the result of a high proportion of temperate invaders. CONCLUSIONS Observed patterns are due to the human-induced sympatry of species with different evolutionary histories whose flowering phenology evolved under different climatic regimes. The severity of the main abiotic filters imposed by the invaded regions (e.g. summer drought) has not been strong enough (yet) to shift the flowering pattern of invasive species to correspond with that of native relatives. It does, however, determine the length of the flowering season and the type of habitat invaded by summer-flowering aliens. Results suggest different implications for impacts at evolutionary time scales among the three regions.


Ecology | 2014

Phenology effects on invasion success: insights from coupling field experiments to coexistence theory

Oscar Godoy; Jonathan M. Levine

Ecologists have identified a growing number of functional traits that promote invasion. However, whether trait differences between exotic and native species promote invasion success by enhancing niche differences or giving invaders competitive advantages is poorly understood. We explored the mechanisms by which phenology determines invasion success in a California annual plant community by quantifying how the seasonal timing of growth relates to niche differences that stabilize coexistence, and the competitive ability differences that drive dominance and exclusion. We parameterized models of community dynamics from experimentally assembled annual communities in which exotic plants displayed earlier, coincident, or later phenology than native residents. Using recent theoretical advances from the coexistence literature, we found that differences in phenology promote stabilizing niche differences between exotic and native species. However, phenology was more strongly related to competitive ability differences, allowing later invaders to outcompete earlier native competitors and native residents to outcompete earlier invaders in field experiments. Few of these insights could be inferred by comparing the competitive outcomes across invaders, highlighting the need to quantify niche and competitive ability differences when disentangling how species differences drive invasion success.


Biological Invasions | 2011

Forests are not immune to plant invasions: phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest

Oscar Godoy; Alfredo Saldaña; Nicol Fuentes; Fernando Valladares; Ernesto Gianoli

In the South American temperate evergreen rainforest (Valdivian forest), invasive plants are mainly restricted to open sites, being rare in the shaded understory. This is consistent with the notion of closed-canopy forests as communities relatively resistant to plant invasions. However, alien plants able to develop shade tolerance could be a threat to this unique forest. Phenotypic plasticity and local adaptation are two mechanisms enhancing invasiveness. Phenotypic plasticity can promote local adaptation by facilitating the establishment and persistence of invasive species in novel environments. We investigated the role of these processes in the recent colonization of Valdivian forest understory by the perennial alien herb Prunella vulgaris from nearby populations in open sites. Using reciprocal transplants, we found local adaptation between populations. Field data showed that the shade environment selected for taller plants and greater specific leaf areas. We found population differentiation and within-population genetic variation in both mean values and reaction norms to light variation of several ecophysiological traits in common gardens from seeds collected in sun and shade populations. The colonization of the forest resulted in a reduction of plastic responses to light variation, which is consistent with the occurrence of genetic assimilation and suggests that P. vulgaris individuals adapted to the shade have reduced probabilities to return to open sites. All results taken together confirm the potential for rapid evolution of shade tolerance in P. vulgaris and suggest that this alien species may pose a threat to the native understory flora of Valdivian forest.


New Phytologist | 2012

The relative importance for plant invasiveness of trait means, and their plasticity and integration in a multivariate framework.

Oscar Godoy; Fernando Valladares; Pilar Castro-Díez

Functional traits, their plasticity and their integration in a phenotype have profound impacts on plant performance. We developed structural equation models (SEMs) to evaluate their relative contribution to promote invasiveness in plants along resource gradients. We compared 20 invasive-native phylogenetically and ecologically related pairs. SEMs included one morphological (root-to-shoot ratio (R/S)) and one physiological (photosynthesis nitrogen-use efficiency (PNUE)) trait, their plasticities in response to nutrient and light variation, and phenotypic integration among 31 traits. Additionally, these components were related to two fitness estimators, biomass and survival. The relative contributions of traits, plasticity and integration were similar in invasive and native species. Trait means were more important than plasticity and integration for fitness. Invasive species showed higher fitness than natives because: they had lower R/S and higher PNUE values across gradients; their higher PNUE plasticity positively influenced biomass and thus survival; and they offset more the cases where plasticity and integration had a negative direct effect on fitness. Our results suggest that invasiveness is promoted by higher values in the fitness hierarchy--trait means are more important than trait plasticity, and plasticity is similar to integration--rather than by a specific combination of the three components of the functional strategy.


Plant Biology | 2009

Different flowering phenology of alien invasive species in Spain: evidence for the use of an empty temporal niche?

Oscar Godoy; Pilar Castro-Díez; Fernando Valladares; M. Costa-Tenorio

Flowering phenology is an important and poorly understood plant trait that may possibly be related to the invasiveness potential of alien species. The present work evaluates whether flowering time of invasive alien species is a key trait to overcome the climatic filters operating in continental Mediterranean ecosystems of Spain (characterised by summer drought and low temperatures in winter). We conducted comparisons between the flowering phenology of the invasive species in their native range and in Spain, and between flowering phenology of 91 coexisting invasive-native species pairs. For the alien species, geographical change from the native to the invaded region did not result in shifts in the start and the length of the flowering period. Overall, climatic conditions in the native range of species selected for a flowering pattern is maintained after translocation of the species to another region. Flowering of tropical and temperate invasive alien species peaked in summer, which contrasts with the spring flowering of native and invasive alien species of Mediterranean climate origin. By exploiting this new temporal niche, these invasive alien species native to tropical and temperate regions benefit from reduced competition with natives for abiotic and biotic resources. We suggest that human-mediated actions have reduced the strength of the summer drought filter in particular microhabitats, permitting the invasion of many summer-flowering aliens.


Frontiers in Plant Science | 2015

Species coexistence in a changing world.

Fernando Valladares; Cristina C. Bastias; Oscar Godoy; Elena Granda; Adrián Escudero

The consequences of global change for the maintenance of species diversity will depend on the sum of each species responses to the environment and on the interactions among them. A wide ecological literature supports that these species-specific responses can arise from factors related to life strategies, evolutionary history and intraspecific variation, and also from environmental variation in space and time. In the light of recent advances from coexistence theory combined with mechanistic explanations of diversity maintenance, we discuss how global change drivers can influence species coexistence. We revise the importance of both competition and facilitation for understanding coexistence in different ecosystems, address the influence of phylogenetic relatedness, functional traits, phenotypic plasticity and intraspecific variability, and discuss lessons learnt from invasion ecology. While most previous studies have focused their efforts on disentangling the mechanisms that maintain the biological diversity in species-rich ecosystems such as tropical forests, grasslands and coral reefs, we argue that much can be learnt from pauci-specific communities where functional variability within each species, together with demographic and stochastic processes becomes key to understand species interactions and eventually community responses to global change.


Ecology | 2017

Intransitivity is infrequent and fails to promote annual plant coexistence without pairwise niche differences

Oscar Godoy; Daniel B. Stouffer; Nathan J. B. Kraft; Jonathan M. Levine

Intransitive competition is often projected to be a widespread mechanism of species coexistence in ecological communities. However, it is unknown how much of the coexistence we observe in nature results from this mechanism when species interactions are also stabilized by pairwise niche differences. We combined field-parameterized models of competition among 18 annual plant species with tools from network theory to quantify the prevalence of intransitive competitive relationships. We then analyzed the predicted outcome of competitive interactions with and without pairwise niche differences. Intransitive competition was found for just 15-19% of the 816 possible triplets, and this mechanism was never sufficient to stabilize the coexistence of the triplet when the pair-wise niche differences between competitors were removed. Of the transitive and intransitive triplets, only four were predicted to coexist and these were more similar in multidimensional trait space defined by 11 functional traits than non-coexisting triplets. Our results argue that intransitive competition may be less frequent than recently posed, and that even when it does operate, pairwise niche differences may be key to possible coexistence.

Collaboration


Dive into the Oscar Godoy's collaboration.

Top Co-Authors

Avatar

Fernando Valladares

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ignacio Manuel Pérez-Ramos

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ignasi Bartomeus

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge