Oscar Gonzalez-Perez
University of Colima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oscar Gonzalez-Perez.
The Journal of Neuroscience | 2006
Bénédicte Menn; José Manuel García-Verdugo; Cynthia Yaschine; Oscar Gonzalez-Perez; David H. Rowitch; Arturo Alvarez-Buylla
Glial fibrillary acidic protein (GFAP)-positive astrocytes (type B cells) in the subventricular zone (SVZ) generate large numbers of new neurons in the adult brain. SVZ stem cells can also generate oligodendrocytes in vitro, but it is not known whether these adult primary progenitors generate oligodendrocytes in vivo. Myelin repair and oligodendrocyte formation in the adult brain is instead associated with glial-restricted progenitors cells, known as oligodendrocyte progenitor cells (OPCs). Here we show that type B cells also generate a small number of nonmyelinating NG2-positive OPCs and mature myelinating oligodendrocytes. Some type B cells and a small subpopulation of actively dividing type C (transit-amplifying) cells expressed oligodendrocyte lineage transcription factor 2 (Olig2), suggesting that oligodendrocyte differentiation in the SVZ begins early in the lineage. Olig2-positive, polysialylated neural cell adhesion molecule-positive, PDGF receptor α-positive, and β-tubulin-negative cells originating in the SVZ migrated into corpus callosum, striatum, and fimbria fornix to differentiate into the NG2-positive nonmyelinating and mature myelinating oligodendrocytes. Furthermore, primary clonal cultures of type B cells gave rise to oligodendrocytes alone or oligodendrocytes and neurons. Importantly, the number of oligodendrocytes derived from type B cells in vivo increased fourfold after a demyelinating lesion in corpus callosum, indicating that SVZ astrocytes participate in myelin repair in the adult brain. Our work identifies SVZ type B cells as progenitors of oligodendrocytes in normal and injured adult brain.
The Journal of Comparative Neurology | 2006
Alfredo Quinones-Hinojosa; Nader Sanai; Mario Soriano-Navarro; Oscar Gonzalez-Perez; Zaman Mirzadeh; Sara Gil-Perotin; Richard Romero-Rodriguez; Mitchell S. Berger; Jose Manuel Garcia-Verdugo; Arturo Alvarez-Buylla
The lateral wall of the lateral ventricle in the human brain contains neural stem cells throughout adult life. We conducted a cytoarchitectural and ultrastructural study in complete postmortem brains (n = 7) and in postmortem (n = 42) and intraoperative tissue (n = 43) samples of the lateral walls of the human lateral ventricles. With varying thickness and cell densities, four layers were observed throughout the lateral ventricular wall: a monolayer of ependymal cells (Layer I), a hypocellular gap (Layer II), a ribbon of cells (Layer III) composed of astrocytes, and a transitional zone (Layer IV) into the brain parenchyma. Unlike rodents and nonhuman primates, adult human glial fibrillary acidic protein (GFAP)+ subventricular zone (SVZ) astrocytes are separated from the ependyma by the hypocellular gap. Some astrocytes as well as a few GFAP‐cells in Layer II in the SVZ of the anterior horn and the body of the lateral ventricle appear to proliferate based on proliferating cell nuclear antigen (PCNA) and Ki67 staining. However, compared to rodents, the adult human SVZ appears to be devoid of chain migration or large numbers of newly formed young neurons. It was only in the anterior SVZ that we found examples of elongated Tuj1+ cells with migratory morphology. We provide ultrastructural criteria to identify the different cells types in the human SVZ including three distinct types of astrocytes and a group of displaced ependymal cells between Layers II and III. Ultrastructural analysis of this layer revealed a remarkable network of astrocytic and ependymal processes. This work provides a basic description of the organization of the adult human SVZ. J. Comp. Neurol. 494:415–434, 2006.
Stem Cells | 2009
Oscar Gonzalez-Perez; Ricardo Romero-Rodriguez; Mario Soriano-Navarro; Jose Manuel Garcia-Verdugo; Arturo Alvarez-Buylla
New neurons and oligodendrocytes are continuously produced in the subventricular zone (SVZ) of adult mammalian brains. Under normal conditions, the SVZ primary precursors (type B1 cells) generate type C cells, most of which differentiate into neurons, with a small subpopulation giving rise to oligodendrocytes. Epidermal growth factor (EGF) signaling induces dramatic proliferation and migration of SVZ progenitors, a process that could have therapeutic applications. However, the fate of cells derived from adult neural stem cells after EGF stimulation remains unknown. Here, we specifically labeled SVZ B1 cells and followed their progeny after a 7‐day intraventricular infusion of EGF. Cells derived from SVZ B1 cells invaded the parenchyma around the SVZ into the striatum, septum, corpus callosum, and fimbria‐fornix. Most of these B1‐derived cells gave rise to cells in the oligodendrocyte lineage, including local NG2+ progenitors, and premyelinating and myelinating oligodendrocytes. SVZ B1 cells also gave rise to a population of highly‐branched S100β+/glial fibrillary acidic protein (GFAP)+ cells in the striatum and septum, but no neuronal differentiation was observed. Interestingly, when demyelination was induced in the corpus callosum by a local injection of lysolecithin, an increased number of cells derived from SVZ B1 cells and stimulated to migrate and proliferate by EGF infusion differentiated into oligodendrocytes at the lesion site. This work indicates that EGF infusion can greatly expand the number of progenitors derived from the SVZ primary progenitors which migrate and differentiate into oligodendroglial cells. This expanded population could be used for the repair of white matter lesions. STEM CELLS 2009;27:2032–2043
NeuroImage | 2006
Erik M. Shapiro; Oscar Gonzalez-Perez; Jose Manuel Garcia-Verdugo; Arturo Alvarez-Buylla; Alan P. Koretsky
Neural progenitor cells (NPCs) reside within the subventricular zone (SVZ) in rodents. These NPCs give rise to neural precursors in adults that migrate to the olfactory bulb (OB) along a well-defined pathway, the rostral migratory stream (RMS). Here we demonstrate that these NPCs can be labeled, in vivo, in adult rats with fluorescent, micron-sized iron oxide particles (MPIOs), and that magnetic resonance imaging (MRI) can detect migrating neural precursors carrying MPIOs along the RMS to the OB. Immunohistochemistry and electron microscopy indicated that particles were inside GFAP(+) neural progenitor cells in the SVZ, migrating PSA-NCAM(+) and Doublecortin(+) neural precursors within the RMS and OB, and Neu-N(+) mature neurons in the OB. This work demonstrates that in vivo cell labeling of progenitor cells for MRI is possible and enables the serial, non-invasive visualization of endogenous progenitor/precursor cell migration.
Brain Research Reviews | 2011
Oscar Gonzalez-Perez; Arturo Alvarez-Buylla
Demyelinating diseases are characterized by an extensive loss of oligodendrocytes and myelin sheaths from axolemma. These neurological disorders are a common cause of disability in young adults, but so far, there is no effective treatment against them. It has been suggested that neural stem cells (NSCs) may play an important role in brain repair therapies. NSCs in the adult subventricular zone (SVZ), also known as Type-B cells, are multipotential cells that can self-renew and give rise to neurons and glia. Recent findings have shown that cells derived from SVZ Type-B cells actively respond to epidermal-growth-factor (EGF) stimulation becoming highly migratory and proliferative. Interestingly, a subpopulation of these EGF-activated cells expresses markers of oligodendrocyte precursor cells (OPCs). When EGF administration is removed, SVZ-derived OPCs differentiate into myelinating and pre-myelinating oligodendrocytes in the white matter tracts of corpus callosum, fimbria fornix and striatum. In the presence of a demyelinating lesion, OPCs derived from EGF-stimulated SVZ progenitors contribute to myelin repair. Given their high migratory potential and their ability to differentiate into myelin-forming cells, SVZ NSCs represent an important endogenous source of OPCs for preserving the oligodendrocyte population in the white matter and for the repair of demyelinating injuries.
Neuroscience | 2012
Oscar Gonzalez-Perez; Fernando Gutierrez-Fernandez; Veronica Lopez-Virgen; Jorge Collás-Aguilar; Alfredo Quinones-Hinojosa; José M. García-Verdugo
In mammals, neurogenesis and oligodendrogenesis are germinal processes that occur in the adult brain throughout life. The subventricular zone (SVZ) and subgranular zone (SGZ) are the main neurogenic regions in the adult brain. Therein, resides a subpopulation of astrocytes that act as neural stem cells (NSCs). Increasing evidence indicates that pro-inflammatory and other immunological mediators are important regulators of neural precursors into the SVZ and the SGZ. There are a number of inflammatory cytokines that regulate the function of NSCs. Some of the most studied include: interleukin-1, interleukin-6, tumor necrosis factor alpha, insulin-like growth factor-1, growth-regulated oncogene-alpha, leukemia inhibitory factor, cardiotrophin-1, ciliary neurotrophic factor, interferon-gamma, monocyte chemotactic protein-1 and macrophage inflammatory protein-1alpha. This plethora of immunological mediators can control the migration, proliferation, quiescence, cell-fate choices and survival of NSCs and their progeny. Thus, systemic or local inflammatory processes represent important regulators of germinal niches in the adult brain. In this review, we summarized the current evidence regarding the effects of pro-inflammatory cytokines involved in the regulation of adult NSCs under in vitro and in vivo conditions. Additionally, we described the role of proinflammatory cytokines in neurodegenerative diseases and some therapeutical approaches for the immunomodulation of neural progenitor cells.
The Journal of Comparative Neurology | 2011
Hugo Guerrero-Cazares; Oscar Gonzalez-Perez; Mario Soriano-Navarro; Grettel J. Zamora-Berridi; José Manuel García-Verdugo; Alfredo Quinones-Hinojosa
The fetal development of the anterior subventricular zone (SVZ) involves the transformation of radial glia into neural stem cells, in addition to the migration of neuroblasts from the SVZ towards different regions in the brain. In adult rodents this migration from the anterior SVZ is restricted to the olfactory bulb following a rostral migratory stream (RMS) formed by chains of migratory neuroblasts. Similar to rodents, an RMS has been suggested in the adult human brain, where the SVZ remains as an active proliferative region. Nevertheless, a human fetal RMS has not been described and the presence of migratory neuroblasts in the adult remains controversial. Here we describe the cytoarchitecture of the human SVZ at the lateral ganglionic eminence late in the second trimester of development (23–24 weeks postconception). Cell organization in this region is heterogeneous along the ventricular wall, with GFAP‐positive cells aligned to the ventricle. These cells coexpress markers for radial glia like GFAPδ, nestin, and vimentin. We also show the presence of abundant migratory neuroblasts in the anterior horn SVZ forming structures here denominated cell throngs. Interestingly, a ventral extension of the lateral ventricle suggests the presence of a putative RMS. Nevertheless, in the olfactory bulb neuroblast throngs or chain‐like structures were not observed. The lack of these structures closer to the olfactory bulb could indicate a destination for the migratory neuroblasts outside the olfactory bulb in the human brain. J. Comp. Neurol. 519:1165–1180, 2011.
Neuroscience Research | 2003
Joaquín García-Estrada; Oscar Gonzalez-Perez; R E Gonzalez-Castaneda; Alicia Martinez-Contreras; Sonia Luquin; Pedro Garzón-de la Mora; Alicia Navarro-Ruiz
Oxidative stress increases delayed neuronal death in the brain following ischemia. As a consequence, many attempts to reduce the damage resulting from cerebral ischemia under more highly oxidized conditions have focused on treatments aimed at maintaining the redox equilibrium of the local environment. This study demonstrates the synergistic effects of combining treatments with alpha-lipoic acid (LA) and vitamin E (VE) as an efficient measure to reduce the damage caused by cerebral ischemia. Two oral therapeutic protocols were examined: intensive treatment (100 mg/kg LA and 140 mg/kg VE for 7 days after ischemia) and prophylactic treatment (20 mg/kg LA and 50 mg/kg VE from 30 days before infarction up to the day of sacrifice). The prophylactic treatment reduced serum lipid peroxidation, and diminished brain infarct volume by approximately 50%. Furthermore, prophylactically treated rats showed a reduction in post-ischemia neurological scores. No significant differences were found in the intensively treated group. Our data indicate that pre-ischemia administration of the LA-VE antioxidant mixture reduced the volume of brain damaged and the functional consequences of embolic infarction. These findings suggest that prophylaxis with an LA-VE mixture may be valuable in reducing cerebral damage levels in patients with a high risk of stroke.
Glia | 2010
Oscar Gonzalez-Perez; Alfredo Quinones-Hinojosa
Adult neural stem cells (NSCs) are located in the subventricular zone (SVZ), a specialized brain niche located on the walls of the lateral ventricle. Under physiological conditions, NSCs generate a large number of young neurons and some oligodendrocytes, however the mechanisms controlling cell proliferation and migration are unclear. In vitro, epidermal growth factor (EGF) signaling has been shown to be an important mediator of cell proliferation and migration in the adult brain; however, the primary SVZ progenitors that respond to EGF are not well known. In this study, we isolated SVZ type‐B astrocytes and cultured them under different EGF concentrations. We found a dose‐dependent effect of EGF on proliferation rates and migration of SVZ type‐B astrocytes. We found that GFAP+ type‐B astrocytes gave rise to highly migratory and proliferating cells that expressed Olig2 and NG2. After EGF withdrawal, a significant number of EGF‐stimulated cells differentiated into S100β+/O4+ oligodendrocytes. This study provides new insights about the production of oligodendrocytes derived from the astrocyte NSCs residing in the adult SVZ. To be able to manipulate the endogenous adult progenitors, it is crucial to identify and isolate the responding primary precursors and determine the extracellular signals that regulate their cell division, migration, and fate.
Current Immunology Reviews | 2010
Oscar Gonzalez-Perez; Fernando Jáuregui-Huerta; Alma Y. Galvez-Contreras
New neurons are continuously produced in most, if not all, mammals. This Neurogenesis occurs only in discrete regions of the adult brain: the subventricular zone (SVZ) and the subgranular zone (SGZ). In these areas, there are neural stem cells (NSCs), multipotent and selfrenewing, which are regulated by a number of molecules and signaling pathways that control their cell fate choices, survival and proliferation rates. It was believed that growth and morphogenic factors were the unique mediators that controlled NSCs in vivo. Recently, chemokines and cytokines have been identified as important regulators of NSCs functions. Some of the most studied immunological effectors are leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), interferon-gamma (IFN-γ), insulin-like growth factor-1 (IGF-1), tumor necrosis factor alpha (TNF-α), and the chemokines MCP-1 and SDF-1. These substances exert a considerable regulation on proliferation, cell-fate choices, migration and survival of NSCs. Hence, the immune system is emerging as an important regulator of neurogenic niches in the adult brain, but further studies are necessary to fully establish the biological meaning of these neural effects.