Oscar González-Recio
Cooperative Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oscar González-Recio.
PLOS ONE | 2012
Oscar González-Recio; Eva Ugarte; Alex Bach
Epigenetic regulation in mammals begins in the first stages of embryogenesis. This prenatal programming determines, in part, phenotype expression in adult life. Some species, particularly dairy cattle, are conceived during the maternal lactation, which is a period of large energy and nutrient needs. Under these circumstances, embryo and fetal development compete for nutrients with the mammary gland, which may affect prenatal programming and predetermine phenotype at adulthood. Data from a specialized dairy breed were used to determine the transgenerational effect when embryo development coincides with maternal lactation. Longitudinal phenotypic data for milk yield (kg), ratio of fat-protein content in milk during first lactation, and lifespan (d) from 40,065 cows were adjusted for environmental and genetic effects using a Bayesian framework. Then, the effect of different maternal circumstances was determined on the residuals. The maternal-related circumstances were 1) presence of lactation, 2) maternal milk yield level, and 3) occurrence of mastitis during embryogenesis. Females born to mothers that were lactating while pregnant produced 52 kg (MonteCarlo standard error; MCs.e. = 0.009) less milk, lived 16 d (MCs.e. = 0.002) shorter and were metabolically less efficient (+0.42% milk fat/protein ratio; MCs.e.<0.001) than females whose fetal life developed in the absence of maternal lactation. The greater the maternal milk yield during embryogenesis, the larger the negative effects of prenatal programming, precluding the offspring born to the most productive cows to fully express their potential additive genetic merit during their adult life. Our data provide substantial evidence of transgenerational effect when pregnancy and lactation coincide. Although this effect is relatively low, it should not be ignored when formulating rations for lactating and pregnant cows. Furthermore, breeding, replacement, and management strategies should also take into account whether the individuals were conceived during maternal lactation because, otherwise, their performance may deviate from what it could be expected.
Frontiers in Genetics | 2015
Oscar González-Recio; Miguel A. Toro; Alex Bach
This article reviews the concept of Lamarckian inheritance and the use of the term epigenetics in the field of animal genetics. Epigenetics was first coined by Conrad Hal Waddington (1905–1975), who derived the term from the Aristotelian word epigenesis. There exists some controversy around the word epigenetics and its broad definition. It includes any modification of the expression of genes due to factors other than mutation in the DNA sequence. This involves DNA methylation, post-translational modification of histones, but also linked to regulation of gene expression by non-coding RNAs, genome instabilities or any other force that could modify a phenotype. There is little evidence of the existence of transgenerational epigenetic inheritance in mammals, which may commonly be confounded with environmental forces acting simultaneously on an individual, her developing fetus and the germ cell lines of the latter, although it could have an important role in the cellular energetic status of cells. Finally, we review some of the scarce literature on the use of epigenetics in animal breeding programs.
Journal of Dairy Science | 2014
J.E. Pryce; Oscar González-Recio; J. B. Thornhill; L. C. Marett; W.J. Wales; M.P. Coffey; Y. de Haas; Roel F. Veerkamp; Ben J. Hayes
Validating genomic prediction equations in independent populations is an important part of evaluating genomic selection. Published genomic predictions from 2 studies on (1) residual feed intake and (2) dry matter intake (DMI) were validated in a cohort of 78 multiparous Holsteins from Australia. The mean realized accuracy of genomic prediction for residual feed intake was 0.27 when the reference population included phenotypes from 939 New Zealand and 843 Australian growing heifers (aged 5-8 mo) genotyped on high density (770k) single nucleotide polymorphism chips. The 90% bootstrapped confidence interval of this estimate was between 0.16 and 0.36. The mean realized accuracy was slightly lower (0.25) when the reference population comprised only Australian growing heifers. Higher realized accuracies were achieved for DMI in the same validation population and using a multicountry model that included 958 lactating cows from the Netherlands and United Kingdom in addition to 843 growing heifers from Australia. The multicountry analysis for DMI generated 3 sets of genomic predictions for validation animals, one on each country scale. The highest mean accuracy (0.72) was obtained when the genomic breeding values were expressed on the Dutch scale. Although the validation population used in this study was small (n=78), the results illustrate that genomic selection for DMI and residual feed intake is feasible. Multicountry collaboration in the area of dairy cow feed efficiency is the evident pathway to achieving reasonable genomic prediction accuracies for these valuable traits.
Journal of Dairy Science | 2014
Oscar González-Recio; J.E. Pryce; M. Haile-Mariam; Ben J. Hayes
The economic benefit of expanding the Australian Profit Ranking (APR) index to include residual feed intake (RFI) was evaluated using a multitrait selection index. This required the estimation of genetic parameters for RFI and genetic correlations using single nucleotide polymorphism data (genomic) correlations with other traits. Heritabilities of RFI, dry matter intake (DMI), and all the traits in the APR (milk, fat, and protein yields; somatic cell count; fertility; survival; milking speed; and temperament), and genomic correlations between these traits were estimated using a Bayesian framework, using data from 843 growing Holstein heifers with phenotypes for DMI and RFI, and bulls with records for the other traits. Heritability estimates of DMI and RFI were 0.44 and 0.33, respectively, and the genomic correlation between them was 0.03 and nonsignificant. The genomic correlations between the feed-efficiency traits and milk yield traits were also close to zero, ranging between -0.11 and 0.10. Positive genomic correlations were found for DMI with stature (0.16) and with overall type (0.14), suggesting that taller cows eat more as heifers. One issue was that the genomic correlation estimates for RFI with calving interval (ClvI) and with body condition score were both unfavorable (-0.13 and 0.71 respectively), suggesting an antagonism between feed efficiency and fertility. However, because of the relatively small numbers of animals in this study, a large 95% probability interval existed for the genomic correlation between RFI and ClvI (-0.66, 0.36). Given these parameters, and a genetic correlation between heifer and lactating cow RFI of 0.67, inclusion of RFI in the APR index would reduce RFI by 1.76 kg/cow per year. Including RFI in the APR would result in the national Australian Holstein herd consuming 1.73 × 10(6) kg less feed, which is worth 0.55 million Australian dollars (A
PLOS ONE | 2014
Silvia Teresa Rodríguez-Ramilo; Luis Alberto García-Cortés; Oscar González-Recio
) per year and is 3% greater than is currently possible to achieve. Other traits contributing to profitability, such as milk production and fertility, will also improve through selection on this index; for example, ClvI would be reduced by 0.53 d/cow per year, which is 96% of the gain for this trait that is achieved without RFI in the APR.
Human Genetics | 2014
Evangelina López de Maturana; N. Ibáñez-Escriche; Oscar González-Recio; Gaëlle Marenne; Hossein Mehrban; Stephen J. Chanock; Michael E. Goddard; Núria Malats
Genome-enhanced genotypic evaluations are becoming popular in several livestock species. For this purpose, the combination of the pedigree-based relationship matrix with a genomic similarities matrix between individuals is a common approach. However, the weight placed on each matrix has been so far established with ad hoc procedures, without formal estimation thereof. In addition, when using marker- and pedigree-based relationship matrices together, the resulting combined relationship matrix needs to be adjusted to the same scale in reference to the base population. This study proposes a semi-parametric Bayesian method for combining marker- and pedigree-based information on genome-enabled predictions. A kernel matrix from a reproducing kernel Hilbert spaces regression model was used to combine genomic and genealogical information in a semi-parametric scenario, avoiding inversion and adjustment complications. In addition, the weights on marker- versus pedigree-based information were inferred from a Bayesian model with Markov chain Monte Carlo. The proposed method was assessed involving a large number of SNPs and a large reference population. Five phenotypes, including production and type traits of dairy cattle were evaluated. The reliability of the genome-based predictions was assessed using the correlation, regression coefficient and mean squared error between the predicted and observed values. The results indicated that when a larger weight was given to the pedigree-based relationship matrix the correlation coefficient was lower than in situations where more weight was given to genomic information. Importantly, the posterior means of the inferred weight were near the maximum of 1. The behavior of the regression coefficient and the mean squared error was similar to the performance of the correlation, that is, more weight to the genomic information provided a regression coefficient closer to one and a smaller mean squared error. Our results also indicated a greater accuracy of genomic predictions when using a large reference population.
Journal of Dairy Science | 2016
Neila Ben Sassi; Oscar González-Recio; Raquel de Paz-del Río; Silvia Teresa Rodríguez-Ramilo; Ana I. Fernández
The continuous advancement in genotyping technology has not been accompanied by the application of innovative statistical methods, such as multi-marker methods (MMM), to unravel genetic associations with complex traits. Although the performance of MMM has been widely explored in a prediction context, little is known on their behavior in the quantitative trait loci (QTL) detection under complex genetic architectures. We shed light on this still open question by applying Bayes A (BA) and Bayesian LASSO (BL) to simulated and real data. Both methods were compared to the single marker regression (SMR). Simulated data were generated in the context of six scenarios differing on effect size, minor allele frequency (MAF) and linkage disequilibrium (LD) between QTLs. These were based on real SNP genotypes in chromosome 21 from the Spanish Bladder Cancer Study. We show how the genetic architecture dramatically affects the behavior of the methods in terms of power, type I error and accuracy of estimates. Markers with high MAF are easier to detect by all methods, especially if they have a large effect on the phenotypic trait. A high LD between QTLs with either large or small effects differently affects the power of the methods: it impairs QTL detection with BA, irrespectively of the effect size, although boosts that of small effects with BL and SMR. We demonstrate the convenience of applying MMM rather than SMR because of their larger power and smaller type I error. Results from real data when applying MMM suggest novel associations not detected by SMR.
Journal of Dairy Science | 2013
J.A. Jiménez-Montero; Oscar González-Recio; R. Alenda
Copy number variants (CNV) are structural variants consisting of duplications or deletions of genomic fragments longer than 1 kb that present variability in the population and are heritable. The objective of this study was to identify CNV regions (CNVR) associated with 7 economically important traits (production, functional, and type traits) in Holstein cattle: fat yield, protein yield, somatic cell count, days open, stature, foot angle, and udder depth. Copy number variants were detected by using deep-sequencing data from 10 sequenced bulls and the Bovine SNP chip array hybridization signals. To reduce the number of false-positive calls, only CNV identified by both sequencing and Bovine SNP chip assays were kept in the final data set. This resulted in 823 CNVR. After filtering by minor allele frequency >0.01, a total of 90 CNVR appeared segregating in the bulls that had phenotypic data. Linear and quadratic CNVR effects were estimated using Bayesian approaches. A total of 15 CNVR were associated with the traits included in the analysis. One CNVR was associated with fat and protein yield, another 1 with fat yield, 3 with stature, 1 with foot angle, 7 with udder depth, and only 1 with days open. Among the genes located within these regions, highlighted were the MTHFSD gene that belongs to the folate metabolism genes, which play critical roles in regulating milk protein synthesis; the SNRPE gene that is related to several morphological pathologies; and the NF1 gene, which is associated with potential effects on fertility traits. The results obtained in the current study revealed that these CNVR segregate in the Holstein population, and therefore some potential exists to increase the frequencies of the favorable alleles in the population after independent validation of results in this study. However, genetic variance explained by the variants reported in this study was small.
Journal of Dairy Science | 2013
J.A. Jiménez-Montero; Daniel Gianola; K.A. Weigel; R. Alenda; Oscar González-Recio
The aim of this study was to evaluate methods for genomic evaluation of the Spanish Holstein population as an initial step toward the implementation of routine genomic evaluations. This study provides a description of the population structure of progeny tested bulls in Spain at the genomic level and compares different genomic evaluation methods with regard to accuracy and bias. Two bayesian linear regression models, Bayes-A and Bayesian-LASSO (B-LASSO), as well as a machine learning algorithm, Random-Boosting (R-Boost), and BLUP using a realized genomic relationship matrix (G-BLUP), were compared. Five traits that are currently under selection in the Spanish Holstein population were used: milk yield, fat yield, protein yield, fat percentage, and udder depth. In total, genotypes from 1859 progeny tested bulls were used. The training sets were composed of bulls born before 2005; including 1601 bulls for production and 1574 bulls for type, whereas the testing sets contained 258 and 235 bulls born in 2005 or later for production and type, respectively. Deregressed proofs (DRP) from January 2009 Interbull (Uppsala, Sweden) evaluation were used as the dependent variables for bulls in the training sets, whereas DRP from the December 2011 DRPs Interbull evaluation were used to compare genomic predictions with progeny test results for bulls in the testing set. Genomic predictions were more accurate than traditional pedigree indices for predicting future progeny test results of young bulls. The gain in accuracy, due to inclusion of genomic data varied by trait and ranged from 0.04 to 0.42 Pearson correlation units. Results averaged across traits showed that B-LASSO had the highest accuracy with an advantage of 0.01, 0.03 and 0.03 points in Pearson correlation compared with R-Boost, Bayes-A, and G-BLUP, respectively. The B-LASSO predictions also showed the least bias (0.02, 0.03 and 0.10 SD units less than Bayes-A, R-Boost and G-BLUP, respectively) as measured by mean difference between genomic predictions and progeny test results. The R-Boosting algorithm provided genomic predictions with regression coefficients closer to unity, which is an alternative measure of bias, for 4 out of 5 traits and also resulted in mean squared errors estimates that were 2%, 10%, and 12% smaller than B-LASSO, Bayes-A, and G-BLUP, respectively. The observed prediction accuracy obtained with these methods was within the range of values expected for a population of similar size, suggesting that the prediction method and reference population described herein are appropriate for implementation of routine genome-assisted evaluations in Spanish dairy cattle. R-Boost is a competitive marker regression methodology in terms of predictive ability that can accommodate large data sets.
BMC Genetics | 2015
Hassan Aliloo; J.E. Pryce; Oscar González-Recio; Benjamin G. Cocks; Ben J. Hayes
The aim of this study was to evaluate different-density genotyping panels for genotype imputation and genomic prediction. Genotypes from customized Golden Gate Bovine3K BeadChip [LD3K; low-density (LD) 3,000-marker (3K); Illumina Inc., San Diego, CA] and BovineLD BeadChip [LD6K; 6,000-marker (6K); Illumina Inc.] panels were imputed to the BovineSNP50v2 BeadChip [50K; 50,000-marker; Illumina Inc.]. In addition, LD3K, LD6K, and 50K genotypes were imputed to a BovineHD BeadChip [HD; high-density 800,000-marker (800K) panel], and with predictive ability evaluated and compared subsequently. Comparisons of prediction accuracy were carried out using Random boosting and genomic BLUP. Four traits under selection in the Spanish Holstein population were used: milk yield, fat percentage (FP), somatic cell count, and days open (DO). Training sets at 50K density for imputation and prediction included 1,632 genotypes. Testing sets for imputation from LD to 50K contained 834 genotypes and testing sets for genomic evaluation included 383 bulls. The reference population genotyped at HD included 192 bulls. Imputation using BEAGLE software (http://faculty.washington.edu/browning/beagle/beagle.html) was effective for reconstruction of dense 50K and HD genotypes, even when a small reference population was used, with 98.3% of SNP correctly imputed. Random boosting outperformed genomic BLUP in terms of prediction reliability, mean squared error, and selection effectiveness of top animals in the case of FP. For other traits, however, no clear differences existed between methods. No differences were found between imputed LD and 50K genotypes, whereas evaluation of genotypes imputed to HD was on average across data set, method, and trait, 4% more accurate than 50K prediction, and showed smaller (2%) mean squared error of predictions. Similar bias in regression coefficients was found across data sets but regressions were 0.32 units closer to unity for DO when genotypes were imputed to HD density. Imputation to HD genotypes might produce higher stability in the genomic proofs of young candidates. Regarding selection effectiveness of top animals, more (2%) top bulls were classified correctly with imputed LD6K genotypes than with LD3K. When the original 50K genotypes were used, correct classification of top bulls increased by 1%, and when those genotypes were imputed to HD, 3% more top bulls were detected. Selection effectiveness could be slightly enhanced for certain traits such as FP, somatic cell count, or DO when genotypes are imputed to HD. Genetic evaluation units may consider a trait-dependent strategy in terms of method and genotype density for use in the genome-enhanced evaluations.