Oscar H. Martínez-Costa
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oscar H. Martínez-Costa.
Journal of Biological Chemistry | 2009
Cristina Ferreras; Eloy D. Hernández; Oscar H. Martínez-Costa; Juan J. Aragón
Mammalian phosphofructokinase originated by duplication, fusion, and divergence of a primitive prokaryotic gene, with the duplicated fructose 6-phosphate catalytic site in the C-terminal half becoming an allosteric site for the activator fructose 2,6-bisphosphate. It has been suggested that both sites are shared across the interface between subunits aligned in an antiparallel orientation, the N-terminal half of one subunit facing the C-terminal half of the other. The composition of these binding sites and the way in which subunits interact to form the dimer within the tetrameric enzyme have been reexamined by systematic point mutations to alanine of key amino acid residues of human muscle phosphofructokinase. We found that residues His-199, His-298, Arg-201, and Arg-292 contribute to the catalytic site and not to the allosteric site, because their mutation decreased the affinity for fructose 6-phosphate without affecting the activation by fructose 2,6-bisphosphate or its binding affinity. In contrast, residues Arg-566, Arg-655, and His-661 were critical components of the fructose bisphosphate allosteric site, because their mutation strongly reduced the action and affinity of the activator, with no alteration of substrate binding to the active site. Our results suggest that mammalian phosphofructokinase subunits associate with the N-terminal halves facing each other to form the two catalytic sites/dimer and the C-terminal halves forming the allosteric sites. Additionally, mutation of certain residues eliminated activation by fructose 1,6-bisphosphate, but not its binding, with little effect on activation by fructose 2,6-bisphosphate, indicating a divergence in the signal transduction route despite their binding to the same site.
Biochemical Journal | 2004
Oscar H. Martínez-Costa; Carmen Hermida; Cristina Sánchez-Martínez; Belén Santamarı́a; Juan J. Aragón
Systematic deletions and point mutations in the C-terminal extension of mammalian PFK (phosphofructokinase) led us to identify Leu-767 and Glu-768 of the M-type isoform (PFK-M) as the motifs responsible for the role of this region in inhibition by MgATP. These amino acids are the only residues of the C-terminus that are conserved in all mammalian isoforms, and were found to have a similar function in the C-type isoenzyme. Both residues in PFK-C and Leu-767 in PFK-M were also observed to be critical for inhibition by citrate, which is synergistic with that by MgATP. Binding studies utilizing titration of intrinsic protein fluorescence indicated that the C-terminal part of the enzyme participates in the signal transduction route from the MgATP inhibitory site to the catalytic site, but does not contribute to the binding of this inhibitor, whereas it is essential for the binding of citrate. Mutations of the identified structural motifs did not alter either the action of other allosteric effectors that also interact with MgATP, such as the inhibitor phosphoenolpyruvate and the strong activator fructose 2,6-bisphosphate, or the co-operative effect of fructose 6-phosphate. The latter data provide evidence that activation by fructose 2,6-bisphosphate and fructose 6-phosphate co-operativity are not linked to the same allosteric transition as that mediating inhibition by MgATP.
Journal of Clinical Gastroenterology | 2014
Juan J. Aragón; Carmen Hermida; Oscar H. Martínez-Costa; Valentina Sánchez; Igor Martin; Jose Javier Sanchez; Rosa Codoceo; Jose M. Cano; Ana Cano; Laura Crespo; Yolanda Torres; F. García; Alfonso Fernández-Mayoralas; Jesus Solera; Pilar Martinez
Goals and Background: Hypolactasia affects over half of the world population. Diagnosis remains problematic as currently available tests, such as the hydrogen breath test, have low reliability and lactose intolerance symptoms are unspecific. We evaluated the diagnostic performance and safety of a new noninvasive diagnostic test based on urine or serum measurement of D-xylose after lactase cleavage of orally administered 4-galactosylxylose (gaxilose). Study: In a multicentre, open-label, nonrandomized, phase IIb-III study, consecutive patients with symptoms suggestive of lactose intolerance sequentially underwent intestinal biopsy for direct measurement of lactase activity (reference standard), hydrogen breath test, and blood glucose test after lactose challenge, 4- and 5-hour urine-based gaxilose test, and blood-based gaxilose test. For the gaxilose tests, 0 to 4 and 4 to 5 hours urine samples were taken after a 0.45 g gaxilose dose, whereas serum samples were taken 90 minutes after a 2.7 g dose for D-xylose determination. Genetic testing of hypolactasia was also assessed. Results: Of the 222 patients enrolled, 203 completed all diagnostic tests; 108 were hypolactasic according to biopsy. The sensitivities and specificities and positive and negative predictive values of the gaxilose tests were all >90% versus 69% to 85% for the hydrogen breath test and the blood glucose test. The area under the ROC curve was significantly higher for the gaxilose tests (>0.9, P⩽0.007). These tests also had higher sensitivity than genetic testing for hypolactasia and were well tolerated. Conclusions: The diagnostic performance of the gaxilose tests is excellent and can substantially improve the diagnosis of hypolactasia.
Journal of Clinical Gastroenterology | 2013
Carmen Hermida; Guerra P; Oscar H. Martínez-Costa; Sánchez; Jose Javier Sanchez; Jesus Solera; Alfonso Fernández-Mayoralas; Rosa Codoceo; Frías J; Juan J. Aragón
Goals and Background: Hypolactasia is widespread, yet reliable diagnostic tests are lacking. A new test based on oral administration of 4-galactosylxylose (gaxilose) and urine or serum measurement of D-xylose after cleavage by intestinal lactase is under clinical development. We investigated the optimal dose of gaxilose and calculate cutoff values of D-xylose for that dose. Study: In the randomized, dose-finding, phase I study, urine and serum pharmacokinetics of D-xylose were determined after oral administration of 6 ascending doses of gaxilose (and placebo) to 12 healthy adult volunteers. In the open, parallel, phase Ib study, 30 volunteers received the doses established for the urine and blood tests and D-xylose was measured. Cutoff values were calculated as 1.96×SD below the mean value. Safety was assessed through reporting of adverse events. Results: Gaxilose administration showed a progressive, dose-dependent increase in D-xylose in urine and serum. An optimal gaxilose dose of 0.45 g and urine collection periods of 4 and 5 hours were selected for further studies. For the blood test, a 2.7 g dose was selected and C max measured at 90 minutes. The calculated cutoff values of D-xylose for normal lactase activity were 27.58 and 37.87 mg for the 4- and 5-hour urine tests, respectively, and 0.97 mg/dL for the blood test. There were no treatment-related adverse events. Conclusions: The methodology described provides a simple, safe test for the evaluation of lactase activity in vivo. Further evaluation of the test as a noninvasive diagnosis of hypolactasia is ongoing in patients with lactose intolerance.
Clinical Endocrinology | 2008
Carmen Hermida; Manuel de Oya; Beatriz Cano; Oscar H. Martínez-Costa; Samuel Rivero; José J. García-Ramírez; Jorge Laborda; Juan J. Aragón
Background The Dlk1 gene encodes for dlk1, a transmembrane protein belonging to the EGF‐like repeat‐containing family. Dlk1 has been shown to act as a regulator of adipogenesis. Fc‐dlk1 transgenic mice show a decrease in adipose tissue and glucose tolerance, hypertriglyceridaemia and lower insulin sensitivity. Dlk1‐deficient mice show growth retardation, increased serum lipid metabolites and develop obesity. These data advocate for a role of dlk1 in the maintenance of lipid homeostasis, and suggest that dlk1 levels may influence the development of cardiovascular disease.
Open Biology | 2015
Ana Mesquita; Luis-Carlos Tábara; Oscar H. Martínez-Costa; Natalia Santos-Rodrigo; Olivier Vincent; Ricardo Escalante
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.
Fems Microbiology Letters | 2003
Oscar H. Martínez-Costa; Magdalena Zalacain; David J. Holmes; Francisco Malpartida
We have isolated a Streptomyces hygroscopicus chromosomal DNA fragment able to induce production of the blue-pigmented antibiotic actinorhodin in Streptomyces lividans. The 1.9-kb fragment contains four orfs (orf1-4) of which only orf2 and orf3 were complete. The minimal region involved in activation of actinorhodin production is limited to 165 bp corresponding to the promoter region of orf3. The truncated Orf1 show homologies with threonine synthases, Orf2 is similar to other proteins of unknown function, Orf3 (here named Csp1) is homologous to cold-shock-induced proteins of the Csp family, and Orf4 encodes the N-terminal region of GroEL2. Transcription of csp1 seems to be subjected to temporal control but is not obviously induced by cold shock. Interestingly, the csp1-groEL2 region pleiotropically regulates the production of antibiotics from Streptomyces coelicolor and Streptomyces nodosus.
The FASEB Journal | 2010
Ignacio Arechaga; Oscar H. Martínez-Costa; Cristina Ferreras; José L. Carrascosa; Juan J. Aragón
Phosphofructokinase is a sophisticated allosteric enzyme that is fundamental for the control of glycolysis. The structure of the bacterial enzyme is well characterized. However, little is known about the structural organization of the more complex enzyme from mammals. We have obtained the structure of human muscle phosphofructokinase in the presence of fructose 6-phosphate at a resolution of 1.8 nm by electron microscopy (EM). Particles of the tetrameric enzyme corresponded to an elongated molecule (14.5 × 9 nm) arranged into 2 dimeric subdomains. Image analysis and 3-dimensional reconstruction showed the presence of a prominent channel in one of the dimers but not in the opposite one, revealing that they are in greatly different conformations. Fitting of bacterial structures into the EM model suggested disruption of the fructose 6-phosphate catalytic and the fructose 2,6-bisphophate allosteric sites in the cavity-containing dimer. Therefore, the reported structure might have major implications for the function of mammalian phosphofructokinase.
FEBS Letters | 2007
Oscar H. Martínez-Costa; Cristina Sánchez-Martínez; Valentina Sánchez; Juan J. Aragón
Two phosphofructokinase (PFK) chimeras were constructed by exchanging the N‐ and C‐terminal halves of the mammalian M‐ and C‐type isozymes, to investigate the contribution of each terminus to the catalytic site and the fructose‐2,6‐P2/fructose‐1,6‐P2 allosteric site. The homogeneously‐purified chimeric enzymes organized into tetramers, and exhibited kinetic properties for fructose‐6‐P and MgATP similar to those of the native enzyme that furnished the N‐terminal domain in each case, whereas their fructose‐2,6‐P2 activatory characteristics coincided with those of the isozyme that provided the C‐terminal half. This reflected the role of each domain in the formation of the corresponding binding site. Grafting the N‐terminus of PFK‐M onto the C‐terminus of the fructose‐1,6‐P2 insensitive PFK‐C restored transduction of this signal to the catalytic site, which significance is also discussed.
Biochemical and Biophysical Research Communications | 1990
Jörg Bär; Oscar H. Martínez-Costa; Juan J. Aragón
Stopped-flow measurements have been carried out to study some basic allosteric properties of muscle and yeast phosphofructokinase at physiological concentration of enzyme. An important increase in the affinity for fructose-6-P accompanied by an intense decrease in the ATP inhibition was observed with the muscle enzyme, which also became insensitive to fructose-2,6-P2 under these conditions. Yeast phosphofructokinase exhibited a significant diminution in the inhibition by ATP, although with no apparent change in the affinity for fructose-6-P. These results provide strong support in favor of the dependence of the allosteric regulation of phosphofructokinase on its concentration in vivo.