Oscar H. P. Ramos
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oscar H. P. Ramos.
PLOS Pathogens | 2012
Nathalie Dereuddre-Bosquet; Laurence Morellato-Castillo; Joachim Brouwers; Patrick Augustijns; Kawthar Bouchemal; Gilles Ponchel; Oscar H. P. Ramos; Carolina Herrera; Martha Stefanidou; Robin J. Shattock; Leo Heyndrickx; Guido Vanham; Pascal Kessler; Roger Le Grand; Loı̈c Martin
In complement to an effective vaccine, development of potent anti-HIV microbicides remains an important priority. We have previously shown that the miniCD4 M48U1, a functional mimetic of sCD4 presented on a 27 amino-acid stable scaffold, inhibits a broad range of HIV-1 isolates at sub-nanomolar concentrations in cellular models. Here, we report that M48U1 inhibits efficiently HIV-1Ba-L in human mucosal explants of cervical and colorectal tissues. In vivo efficacy of M48U1 was evaluated in nonhuman primate (NHP) model of mucosal challenge with SHIV162P3 after assessing pharmacokinetics and pharmacodynamics of a miniCD4 gel formulation in sexually matured female cynomolgus macaques. Among 12 females, half were treated with hydroxyethylcellulose-based gel (control), the other half received the same gel containing 3 mg/g of M48U1, one hour before vaginal route challenge with 10 AID50 of SHIV162P3. All control animals were infected with a peak plasma viral load of 105–106 viral RNA (vRNA) copies per mL. In animals treated with miniCD4, 5 out of 6 were fully protected from acquisition of infection, as assessed by qRT-PCR for vRNA detection in plasma, qPCR for viral DNA detection in PBMC and lymph node cells. The only infected animal in this group had a delayed peak of viremia of one week. These results demonstrate that M48U1 miniCD4 acts in vivo as a potent entry inhibitor, which may be considered in microbicide developments.
Microbial Cell Factories | 2013
Hervé Nozach; Carole Fruchart-Gaillard; François Fenaille; Fabrice Beau; Oscar H. P. Ramos; Badreddine Douzi; Natalie J. Saez; Mireille Moutiez; Denis Servent; Muriel Gondry; Robert Thai; Philippe Cuniasse; Renaud Vincentelli; Vincent Dive
BackgroundDisulfide-rich proteins or DRPs are versatile bioactive compounds that encompass a wide variety of pharmacological, therapeutic, and/or biotechnological applications. Still, the production of DRPs in sufficient quantities is a major bottleneck for their complete structural or functional characterization. Recombinant expression of such small proteins containing multiple disulfide bonds in the bacteria E. coli is considered difficult and general methods and protocols, particularly on a high throughput scale, are limited.ResultsHere we report a high throughput screening approach that allowed the systematic investigation of the solubilizing and folding influence of twelve cytoplasmic partners on 28 DRPs in the strains BL21 (DE3) pLysS, Origami B (DE3) pLysS and SHuffle® T7 Express lysY (1008 conditions). The screening identified the conditions leading to the successful soluble expression of the 28 DRPs selected for the study. Amongst 336 conditions tested per bacterial strain, soluble expression was detected in 196 conditions using the strain BL21 (DE3) pLysS, whereas only 44 and 50 conditions for soluble expression were identified for the strains Origami B (DE3) pLysS and SHuffle® T7 Express lysY respectively. To assess the redox states of the DRPs, the solubility screen was coupled with mass spectrometry (MS) to determine the exact masses of the produced DRPs or fusion proteins. To validate the results obtained at analytical scale, several examples of proteins expressed and purified to a larger scale are presented along with their MS and functional characterization.ConclusionsOur results show that the production of soluble and functional DRPs with cytoplasmic partners is possible in E. coli. In spite of its reducing cytoplasm, BL21 (DE3) pLysS is more efficient than the Origami B (DE3) pLysS and SHuffle® T7 Express lysY trxB-/gor- strains for the production of DRPs in fusion with solubilizing partners. However, our data suggest that oxidation of the proteins occurs ex vivo. Our protocols allow the production of a large diversity of DRPs using DsbC as a fusion partner, leading to pure active DRPs at milligram scale in many cases. These results open up new possibilities for the study and development of DRPs with therapeutic or biotechnological interest whose production was previously a limitation.
Journal of Virology | 2013
Julie Matz; Pascal Kessler; Jérôme Bouchet; Olivier Combes; Oscar H. P. Ramos; Francis Barin; Daniel Baty; Loïc Martin; Serge Benichou; Patrick Chames
ABSTRACT Few broadly neutralizing antibodies targeting determinants of the HIV-1 surface envelope glycoprotein (gp120) involved in sequential binding to host CD4 and chemokine receptors have been characterized. While these epitopes show low diversity among various isolates, HIV-1 employs many strategies to evade humoral immune response toward these sensitive sites, including a carbohydrate shield, low accessibility to these buried cavities, and conformational masking. Using trimeric gp140, free or bound to a CD4 mimic, as immunogens in llamas, we selected a panel of broadly neutralizing single-domain antibodies (sdAbs) that bind to either the CD4 or the coreceptor binding site (CD4BS and CoRBS, respectively). When analyzed as monomers or as homo- or heteromultimers, the best sdAb candidates could not only neutralize viruses carrying subtype B envelopes, corresponding to the Env molecule used for immunization and selection, but were also efficient in neutralizing a broad panel of envelopes from subtypes A, C, G, CRF01_AE, and CRF02_AG, including tier 3 viruses. Interestingly, sdAb multimers exhibited a broader neutralizing activity spectrum than the parental sdAb monomers. The extreme stability and high recombinant production yield combined with their broad neutralization capacity make these sdAbs new potential microbicide candidates for HIV-1 transmission prevention.
Journal of Biological Chemistry | 2011
Grégoire Martin; Brian Burke; Robert Thai; Antu K. Dey; Olivier Combes; Oscar H. P. Ramos; Bernadette Heyd; Anthony R. Geonnotti; David C. Montefiori; Elaine Kan; Ying Lian; Yide Sun; Toufik Abache; Jeffrey B. Ulmer; Hocine Madaoui; Raphaël Guerois; Susan W. Barnett; Indresh K. Srivastava; Pascal Kessler; Loïc Martin
CD4 binding on gp120 leads to the exposure of highly conserved regions recognized by the HIV co-receptor CCR5 and by CD4-induced (CD4i) antibodies. A covalent gp120-CD4 complex was shown to elicit CD4i antibody responses in monkeys, which was correlated with control of the HIV virus infection (DeVico, A., Fouts, T., Lewis, G. K., Gallo, R. C., Godfrey, K., Charurat, M., Harris, I., Galmin, L., and Pal, R. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 17477–17482). Because the inclusion of CD4 in a vaccine formulation should be avoided, due to potential autoimmune reactions, we engineered small sized CD4 mimetics (miniCD4s) that are poorly immunogenic and do not induce anti-CD4 antibodies. We made covalent complexes between such an engineered miniCD4 and gp120 or gp140, through a site-directed coupling reaction. These complexes were recognized by CD4i antibodies as well as by the HIV co-receptor CCR5. In addition, they elicit CD4i antibody responses in rabbits and therefore represent potential vaccine candidates that mimic an important HIV fusion intermediate, without autoimmune hazard.
Protein Expression and Purification | 2003
Oscar H. P. Ramos; Adriana K. Carmona; Heloisa S. Selistre-de-Araujo
Metalloproteases comprise a family of Zn(2+)-endopeptidases that degrade most components of the extracellular matrix. Snake venoms are rich sources of metalloproteases, which also digest fibrinogen as well as fibrin, and in some cases, induce hemorrhage. A few low-molecular weight snake venom metalloproteases (svMPs) have been described as being devoid of hemorrhagic activity, but they have strong direct-acting fibrinolytic activity. This property could be very helpful in thrombosis therapy. ACLF is a fibrinolytic, non-hemorrhagic metalloprotease from the venom of the North American snake Agkistrodon contortrix laticinctus. We have developed an expression system for production of a recombinant pro-ACLF from a clone (ACLPREF) isolated from a venom gland cDNA library. The coding region including both the pro-enzyme domain and the mature protein domain was amplified by PCR and subcloned into the pET28a vector and the new plasmid was used to transform BL21(DE3) Escherichia coli cells. Culture of the transformants at 37 degrees C led to the overexpression of an insoluble 48kDa protein after induction with 1.0mM IPTG. The expressed protein was recovered from inclusion bodies with 6M buffered urea and purified by affinity chromatography under denaturing conditions. After dithiothreitol treatment, protein refolding was performed by gradual removal of the denaturing agent by dialysis. The pro-enzyme underwent auto-activation during refolding and it was active on fibrinogen and on a synthetic substrate. To control the activation step, the denaturing agent was rapidly removed to keep the protein in an unprocessed form, followed by later addition of Ca(2+) and Zn(2+) ions. This allowed controlling the enzyme activation, when it is needed.
Scandinavian Journal of Medicine & Science in Sports | 2011
Rita de Cássia Marqueti; Jonato Prestes; C. C. Wang; Oscar H. P. Ramos; Sérgio Eduardo de Andrade Perez; W. R. Nakagaki; Hernandes F. Carvalho; Heloisa S. Selistre-de-Araujo
Androgenic‐anabolic steroids (AAS) have been associated with an increased incidence of tendon rupture. The aim of this study was to compare the biomechanical properties of the rat calcaneal tendon (CT), superficial flexor tendon (SFT), and deep flexor tendon (DFT), and to determine the effect of jump training in association with AAS. Animals were separated into four groups: sedentary, trained, AAS‐treated sedentary rats (AAS), and AAS‐treated and trained animals. Mechanical testing showed that the CT differed from the DFT and SFT, which showed similar mechanical properties. Jump caused the CT to exhibit an extended toe region, an increased resistance to tensional load, and a decreased elastic modulus, characteristics of an elastic tendon capable of storing energy. AAS caused the tendons to be less compliant, and the effects were reinforced by simultaneous training. The DFT was the most affected by training, AAS, and the interaction of both, likely because of its involvement in the toe‐off step of jumping, which we suggest is related to the rapid transmission of force as opposed to energy storage. In conclusion, tendons are differently adapted to exercise, but responded equally to AAS, showing reduced flexibility, which is suggested to increase the risk of tendon rupture in AAS consumers.
Frontiers in Bioscience | 2008
Alexandre Kauskot; Márcia Regina Cominetti; Oscar H. P. Ramos; Iga Bechyne; Jean-Marie Renard; Marc Hoylaerts; Michel Crépin; Chantal Legrand; Heloisa S. Selistre-de-Araujo; Arnaud Bonnefoy
A monomeric RGD-disintegrin was recently identified from a cDNA library from the venom gland of Bothrops alternatus. The corresponding 12 kDa-recombinant protein, DisBa-01, specifically interacted with alpha(v)beta3 integrin and displayed potent anti-metastatic and anti-angiogenic properties. Here, the interaction of DisBa-01 with platelet alphaIIb beta3 integrin and its effects on hemostasis and thrombosis were investigated. DisBa-01 bound to Chinese Hamster Ovary (CHO) cells expressing beta3 or alphaIIb beta3 and promoted their adhesion and the adhesion of resting platelets onto glass coverslips. The disintegrin inhibited the binding of FITC-fibrinogen and FITC-PAC-1 to ADP-stimulated platelets and inhibited ADP-, TRAP- and collagen-induced aggregation of murine, rabbit or human platelets. In a flow chamber assay, DisBa-01 inhibited and reverted platelet adhesion to immobilized fibrinogen. DisBa-01 inhibited the phosphorylation of FAK following platelet activation. The intravenous injection of DisBa-01 in C57Bl6/j mice, prolonged tail bleeding time as well as thrombotic occlusion time in mesenteric venules and arterioles following vessel injury with FeCl3. In conclusion, DisBa-01 antagonizes the platelet alphaIIb beta3 integrin and potently inhibits thrombosis.
Journal of Medicinal Chemistry | 2013
Laurence Morellato-Castillo; Priyamvada Acharya; Olivier Combes; Johan Michiels; Anne Descours; Oscar H. P. Ramos; Yongping Yang; Guido Vanham; Kevin K. Ariën; Peter D. Kwong; Loïc Martin; Pascal Kessler
Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.
Journal of Biological Chemistry | 2011
Miryam Paola Alvarez-Flores; Daniel Furlin; Oscar H. P. Ramos; Andrea Balan; Katsuhiro Konno; Ana Marisa Chudzinski-Tavassi
Envenoming by the contact of human skin with Lonomia obliqua caterpillars promotes a hemorrhagic syndrome characterized by a consumptive coagulopathy. Losac (Lonomia obliqua Stuart factor activator) is a component of the bristle of L. obliqua that is probably partially responsible for the observed syndrome because it activates factor X and is recognized by an effective antilonomic serum. Here we unveil the proteolytic activity of Losac and demonstrate the feasibility of its recombinant production. On the other hand, Losac has no homology to known proteases, but it can be inhibited by PMSF, a serine protease inhibitor. Instead, it shows closer homology to members of the hemolin family of proteins, a group of cell adhesion molecules. The recombinant protein (rLosac) shortened the coagulation time of normal and deficient plasmas, whereas it was ineffective in factor X-deficient plasma unless reconstituted with this protein. rLosac was able to activate factor X in a dose- and time-dependent manner but not γ-carboxyglutamic acid domainless factor X. Moreover, phospholipids and calcium ions increased rLosac activity. Also, rLosac had no effect on fibrin or fibrinogen, indicating its specificity for blood coagulation activation. Linear double reciprocal plots indicate that rLosac follows a Michaelis-Menten kinetics. Cleavage of factor X by rLosac resulted in fragments that are compatible with those generated by RVV-X (a well known factor X activator). Together, our results validate Losac as the first protein from the hemolin family exhibiting procoagulant activity through selective proteolysis on coagulation factor X.
Clinical & Experimental Metastasis | 2008
Oscar H. P. Ramos; Alexandre Kauskot; Márcia Regina Cominetti; Iga Bechyne; Carmen Lucia S. Pontes; Fabrice Chareyre; Jan Manent; Roger Vassy; Marco Giovannini; Chantal Legrand; Heloisa S. Selistre-de-Araujo; Michel Crépin; Arnaud Bonnefoy