Osman Açikgöz
Dokuz Eylül University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Osman Açikgöz.
Neuroscience Letters | 2005
Nazan Uysal; Kazim Tugyan; Berkant Muammer Kayatekin; Osman Açikgöz; Husnu Alper Bagriyanik; Sevil Gönenç; Durgul Ozdemir; Ilkay Aksu; Semin I
It is known that positive effects of regular aerobic exercise on cognitive functions in humans and also animals; but how to the effects of aerobic exercise in adolescent period is unknown. The present study examined the effects of regular aerobic exercise on spatial memory using the Morris water maze, cell density and apoptosis of hippocampus in adolescent rats. Twenty-two days of age male rats were run on a treadmill for 30 min/session at a speed of 8m/min and 0 degrees slope, five times a week for 8 weeks. The present study showed that exercise induced significant cognitive improvement throughout brain maturation in rats. The number of hippocampal CA1 and CA3 neurons, and gyrus dentatus neurons were significantly increased in the exercised rats. There was no significant difference of CA2 neuron density between exercise and control groups. There was no significantly differences in any groups according to the results of apoptosis that account of TUNEL positive cells. The present results suggest that regular moderate aerobic treadmill exercise benefit in cognitive functions. This result may derive from treadmill exercise-induced increase cell density without altering of apoptosis in the hippocampus and dentate gyrus of adolescent rats.
Neonatology | 2005
Abdullah Kumral; Sevil Gönenç; Osman Açikgöz; Ataç Sönmez; Kursad Genc; Osman Yilmaz; Necati Gökmen; Nuray Duman; Hasan Ozkan
Background: We have previously shown that erythropoietin (Epo) exerts neuroprotective effects in the Rice-Vannucci model of neonatal hypoxic-ischemic brain injury. However, the mechanisms of Epo protection in this model are still unclear. Objectives: In the present study, we studied the effects of systemically administered Epo on lipid peroxidation levels and antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities following hypoxic-ischemic brain injury in neonatal rats. Methods: Seven-day-old Wistar rat pups were subjected to left carotid artery occlusion followed by 2.5 h of hypoxic exposure. Brain lipid peroxidation levels and antioxidant enzyme activities were measured in the injured hemispheres 24 h after the hypoxic-ischemic insult. Results: Hypoxic-ischemic injury significantly increased the thiobarbituric acid-reactive substance levels in the injured hemispheres as compared to the control group. In addition, glutathione peroxidase activity was significantly elevated in Epo-treated animals compared to saline-treated animals and the control group. Conclusions: These results suggest that Epo exerts neuroprotective effects against hypoxic-ischemic brain injury at least partially via the modulation of antioxidant enzyme activity.
Brain Research | 1998
Osman Açikgöz; Sevil Gönenç; Berkant Muammer Kayatekin; Nazan Uysal; Cetin Pekcetin; İlgi Şemin; Ataman Güre
The administration of methamphetamine to experimental animals results in damage to nigrostriatal dopaminergic neurons. In the present study, we demonstrated that both the acute repeated and the chronic administration of methamphetamine causes an increase in thiobarbituric acid reactive substances, which are indicators of lipid peroxidation, and superoxide dismutase activity in the rat striatum. The results of present study strengthen the notion that reactive oxygen species may play an important role in the methamphetamine-induced neurotoxicity.
Neuroscience Letters | 2005
Durgul Ozdemir; Kazim Tugyan; Nazan Uysal; Ulker Sonmez; Ataç Sönmez; Osman Açikgöz; Nail Özdemir; Murat Duman; Hasan Ozkan
It is well known that head trauma induces the cognitive dysfunction resulted from hippocampal damage. In the present study, we aimed to demonstrate the effect of melatonin on hippocampal damage and spatial memory deficits in 7-day-old rat pups subjected to contusion injury. Melatonin was injected intraperitoneally at the doses of 5 or 20 mg/kg of body weight immediately after induction of traumatic injury. Hippocampal damage was examined by cresyl violet staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Spatial memory performance was assessed in the Morris water maze. Melatonin significantly attenuated trauma-induced neuronal death in hippocampal CA1, CA3 regions and dentate gyrus, and improved spatial memory deficits, which was equally effective at doses of 5-20 mg/kg. The present results suggest that melatonin is a highly promising agent for preventing the unfavorable outcomes of traumatic brain injury in young children.
Neuroscience Letters | 2009
Ilkay Aksu; Ulas Mehmet Camsari; Osman Açikgöz
Although regular physical exercise is beneficial to the body, it is well known that exhaustive exercise causes oxidative stress in muscle. Recent studies suggest that regular moderate physical exercise has the beneficial effects on brain. There is a little information regarding whether or not exercise could generate oxidative stress in the brain and the findings are conflicting. The aim of this study was to investigate the effects of acute and chronic exercise on thiobarbituric acid reactive substances, as an indicator of lipid peroxidation, in the hippocampus, which has a high concentration of glucocorticoid receptors, and prefrontal cortex and striatum, which have high dopamine content. Additionally we examined antioxidant enzyme activities, superoxide dismutase and glutathione peroxidase and nitrite-nitrate levels to assess the effects of reactive oxygen and nitrogen species. In this study it was shown that acute treadmill exercise at different strengths did not cause oxidative stress in prefrontal cortex, striatum and hypocampus regions of the brain. Regular treadmill exercise performed at different strengths was shown not to cause oxidative stress in prefrontal cortex, striatum and hippocampus regions of brain. As a result, we propose that acute and chronic exercise do not cause oxidant stress in prefrontal cortex, striatum and hippocampus and chronic exercise has a favorable effect on hippocampus, possibly by decreasing superoxide radical formation.
Scandinavian Journal of Urology and Nephrology | 1997
Caner Cavdar; Taner Camsari; Semin I; Sevil Gönenç; Osman Açikgöz
In anaemia of chronic renal failure, the most important factor in the shortened erythrocyte survival may be lipid peroxidation of the cell membrane. Defective antioxidant activity may increase this damage. Although recombinant human erythropoietin (r-HuEPO) can effectively correct anaemia in chronic haemodialysis patients, its actions on lipid peroxidation and antioxidant activity are not clear. These actions were investigated in 13 patients undergoing chronic haemodialysis. Antioxidant activity, including red blood cell superoxide dismutase and total glutathione peroxidase levels and the lipid peroxidation product malondialdehyde, were measured before and 3 months after initiation of r-HuEPO treatment, using heparinized venous whole blood for cell and plasma determinations. Age-matched healthy volunteers were controls. Significantly higher levels of superoxide dismutase and total glutathione peroxidase were found in the patients than in the controls (p < 0.01). Plasma malondialdehyde levels were not affected by r-HuEPO. The results are explained by erythropoiesis and cellular haemoglobin synthesis due to r-HuEPO, followed by increase of circulating young red cells. The membranes of these young cells contain more antioxidant enzymes than the others. Despite r-HuEPO treatment, plasma malondialdehyde levels in haemodialysis patients may be higher than normal because of the uraemic milieu and the chronic haemodialysis.
Neuroscience Letters | 2004
Muge Kiray; Nazan Uysal; Ataç Sönmez; Osman Açikgöz; Sevil Gönenç
Increasing age decreases spatial learning and memory. Spatial learning is coordinated with different brain regions. Since the oxidative damage may play a role in the aging process, including the associated cognitive decline, age-related impairment in spatial learning and memory may be alleviated by antioxidant treatment. The present study examined the effects of the monoamine oxidase B inhibitor L-deprenyl, alone and in combination with estradiol, on spatial memory using the Morris water maze and oxidant stress in aged female rat brains. We demonstrated that co-administration of deprenyl and estradiol caused a synergistic effect on spatial memory. However, use of either deprenyl or estradiol alone increased antioxidant enzyme activities in brain and reduced lipid peroxidation. Therefore, positive effects of deprenyl and estradiol on spatial memory may occur due not only to their antioxidant activities but also to the different actions.
Neuroscience Letters | 2006
Osman Açikgöz; Ilkay Aksu; Berkant Muammer Kayatekin
Although regular physical exercise is beneficial to the body, it is well known that exhaustive exercise causes oxidative stress in muscle. Recent studies suggest that regular moderate physical exercise has the beneficial effects on brain. However, there is little information regarding whether or not exhaustive exercise could generate oxidative stress in brain and the findings are conflicting. The aim of this study was to investigate the effects of exhaustive exercise on thiobarbituric acid reactive substances, as an indicator of lipid peroxidation, in the hippocampus, prefrontal cortex and striatum. Additionally we examined antioxidant enzymes activities, superoxide dismutase and glutathione peroxidase, to assess the effects of reactive oxygen species. Exhaustive exercise did not change superoxide dismutase and glutathione peroxidase enzyme activities and thiobarbituric acid reactive substances levels neither immediately (0 min) nor at 3, 6, 12, 24 and 48 h after the cessation of exercise in the brain. These results indicate that acute exhaustive exercise may not cause significant lipid peroxidation in the hippocampus, prefrontal cortex and striatum during the post-exercise period.
European Neuropsychopharmacology | 2000
Osman Açikgöz; Sevil Gönenç; Berkant Muammer Kayatekin; Cetin Pekcetin; Nazan Uysal; Ayfer Dayi; İlgi Şemin; Ataman Güre
The administration of methamphetamine to experimental animals results in damage to dopaminergic neurons. In the present study, we demonstrated that a single dose (15 mg/kg) of methamphetamine results in production of oxidative stress as demonstrated by increased thiobarbituric acid reactive substances levels in the rat striatum and prefrontal cortex. In conclusion, the results of present study provide further evidence in support of the notion that oxidative stress may play an important role in the methamphetamine-induced neurotoxicity.
Neuroscience Letters | 2005
Nazan Uysal; Sevil Gönenç; Osman Açikgöz; Cetin Pekcetin; Berkant Muammer Kayatekin; Ataç Sönmez; Semin I
Developing brain is much more sensitive to all kind of stressors than the developed brain. Early maternal deprivation causes some behavioural and physiological effects on rats. After the birth, there is no endocrinological response to stressors between post-natal 4 and 14th days, which is called stress-hyporesponsive period (SHRP) in rats. This hypo-responsiveness is time- and stressor-specific, as some more severe stressors have been shown to induce a stress response. The present study examined the effects of maternal deprivation on oxidative stress in the hippocampus, prefrontal cortex (PFC) and striatum regions of the brain both during and after SHRP of the infant rats. The results showed that maternal deprivation in SHRP increased antioxidant enzyme activities and reduced lipid peroxidation in infant rat brain. However, by the termination of SHRP, maternal deprivation reduced enzyme activities and increased lipid peroxidation. The results indicated that infant brain might be protected in SHRP from maternal deprivation-induced oxidative stress.