Osman E. Ozbulut
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Osman E. Ozbulut.
Journal of Intelligent Material Systems and Structures | 2011
Osman E. Ozbulut; Stefan Hurlebaus; Reginald DesRoches
Shape memory alloys (SMAs) are a class of alloys that possess numerous unique characteristics. They offer complete shape recovery after experiencing large strains, energy dissipation through hysteresis of response, excellent resistance to corrosion, high fatigue resistance, and high strength. These features of SMAs, which can be exploited for the use in control of civil structures subjected to seismic events, have attracted the interest of many researchers in structural engineering over the past decades. This article presents an extensive review of seismic applications of SMAs. First, a basic description of two unique effects of SMAs, namely shape memory and superelastic effect, is provided. Then, the mechanical characteristics of the most commonly used SMAs are discussed. Next, the material models proposed to capture the response of SMAs in seismic applications are briefly introduced. Finally, applications of SMAs to buildings and bridges to improve seismic response are thoroughly reviewed.
Smart Materials and Structures | 2011
Osman E. Ozbulut; Stefan Hurlebaus
This paper explores the effectiveness of shape memory alloy (SMA)/rubber-based isolation systems for seismic protection of bridges against near-field earthquakes by performing a sensitivity analysis. The isolation system considered in this study consists of a laminated rubber bearing, which provides lateral flexibility while supplying high vertical load-carrying capacity, and an auxiliary device made of multiple loops of SMA wires. The SMA device offers additional energy dissipating and re-centering capability. A three-span continuous bridge is modeled with the SMA/rubber-based (SRB) isolation system. Numerical simulations of the bridge are conducted for various near-field ground motions that are spectrally matched to a target design spectrum. The normalized forward transformation strength, forward transformation displacement and pre-strain level of the SMA device, ambient temperature and the lateral stiffness of the rubber bearings are selected as parameters of the sensitivity study. The variation of the seismic response of the bridge with the considered parameters is assessed. Also, the performance of the SRB isolation system with optimal design parameters is compared with an SMA-based sliding isolation system. The results indicate that the SRB isolation system can successfully reduce the seismic response of highway bridges; however, a smart isolation system that combines sliding bearings together with an SMA device is more efficient than the SRB isolation system.
Smart Materials and Structures | 2010
Osman E. Ozbulut; Paul N. Roschke; Pei-Yang Lin; Chin-Hsiung Loh
Damping systems discussed in this work are optimized so that a three-story steel frame structure and its shape memory alloy (SMA) bracing system minimize response metrics due to a custom-tailored earthquake excitation. Multiple-objective numerical optimization that simultaneously minimizes displacements and accelerations of the structure is carried out with a genetic algorithm (GA) in order to optimize SMA bracing elements within the structure. After design of an optimal SMA damping system is complete, full-scale experimental shake table tests are conducted on a large-scale steel frame that is equipped with the optimal SMA devices. A fuzzy inference system is developed from data collected during the testing to simulate the dynamic material response of the SMA bracing subcomponents. Finally, nonlinear analyses of a three-story braced frame are carried out to evaluate the performance of comparable SMA and commonly used steel braces under dynamic loading conditions and to assess the effectiveness of GA-optimized SMA bracing design as compared to alternative designs of SMA braces. It is shown that peak displacement of a structure can be reduced without causing significant acceleration response amplification through a judicious selection of physical characteristics of the SMA devices. Also, SMA devices provide a recentering mechanism for the structure to return to its original position after a seismic event.
Journal of Intelligent Material Systems and Structures | 2010
Osman E. Ozbulut; Stefan Hurlebaus
This article proposes a neuro-fuzzy model of superelastic NiTi shape memory alloy (SMA) wires for use in seismic applications. First, in order to collect experimental data, uniaxial tensile tests are conducted on superelastic wires in the temperature range of 0—40°C, and at the loading frequencies of 0.05—2 Hz with five different strain amplitudes. Then, an adaptive neuro-fuzzy inference system (ANFIS) is employed to construct a model of SMAs based on experimental input—output data pairs. The fuzzy model employs strain, strain-rate, and temperature as input variables, and provides stress as single output. Gaussian membership functions (MFs) are assigned to each input variables. A total of 12 if—then rules are used to map these MFs to output characteristic. The model obtained from ANFIS training is validated by using an experimental data set that is not used during training. The developed model is capable of simulating behavior of superelastic SMAs at various temperatures and at various loading rates while it remains simple enough to realize numerical simulations. These features of the model make it attractive for numerical studies on vibration control of structures.
Earthquake Spectra | 2012
Osman E. Ozbulut; Stefan Hurlebaus
This paper presents a comparative seismic performance assessment of super-elastic-friction base isolator (S-FBI) systems in improving the response of bridges under near-field earthquakes. The S-FBI system consists of a steel-Teflon sliding bearing and a superelastic shape memory alloy (SMA) device. The other isolation systems considered here are lead rubber bearing (LRB), friction pendulum system (FPS), and resilient-friction base isolator (R-FBI). Each isolation system is designed to provide the same isolation period and characteristic strength. Nonlinear time-history analyses of an isolated bridge are performed to compare the performance of various isolation systems. The results indicate that the S-FBI system shows superior performance in reducing deck displacement response and effectively limits permanent bearing deformation, whereas residual deformations are present for the other isolation systems in some cases. It is also observed that the LRB system has the largest deck drifts while the FPS system and R-FBI system produce the smallest peak deck acceleration and base shear.
Journal of Intelligent Material Systems and Structures | 2015
Osman E. Ozbulut; Reginald F. Hamilton; Muhammad M. Sherif; Asheesh Lanba
Shape memory alloys are a class of smart materials that recover apparent plastic deformation (∼6%–8% strain) after heating, thus “remembering” the original shape. This shape memory effect can be exploited for self-post-tensioning applications, and NiTi-based shape memory alloys are promising as shape memory effect is possible at elevated temperatures amenable to practical application compared to conventional NiTi. This study investigates the feasibility of self-post-tensioned concrete elements by activating the shape memory effect of NiTiNb, a class of wide-hysteresis shape memory alloys, using the heat of hydration of grout. First, the microstructure characterization of the NiTiNb wide-hysteresis shape memory alloys is discussed. Then, the tensile stress-induced martensitic transformations in NiTiNb shape memory alloy tendons are studied. Next, the temperature increase due to the heat of hydration of four commercially available grouts is investigated. Pull-out tests are also conducted to investigate the bond between the grout and shape memory alloy bar. Results show that the increase in temperature due to hydration heat can provide significant strain recovery during a free recovery experiment, while the same temperature increase only partially activates the shape memory alloys during a constrained recovery.
Proceedings of SPIE | 2010
Osman E. Ozbulut; Stefan Hurlebaus
Base isolation is an effective method of reducing seismic response of bridges during an earthquake. Rubber isolators are one of the most common types of base isolation systems. As an alternative to conventional rubber isolators such as high damping rubber bearing and lead rubber bearing, smart rubber bearing systems with shape memory alloys (SMAs) have been proposed in recent years. As a class of smart materials, shape memory alloys shows excellent re-centering and considerable damping capabilities which can be exploited to obtain an efficient seismic isolation system. This paper explores effectiveness of shape memory alloy/rubber-based isolation systems for protecting bridges against seismic loads by performing a sensitivity analysis. The isolation system considered in this study consists of a laminated rubber bearing which provides lateral flexibility while supplying high vertical load-carrying capacity and an auxiliary device made of multiple loops SMA wires. The SMA device offers additional energy dissipating and re-centering capability. A threespan continuous bridge is modeled with SMA/rubber-based isolation system. Numerical simulations of the bridge are conducted for various historical ground motions that are spectrally matched to a target design spectrum. The normalized yield strength, yield displacement and pre-stress level of the SMA device and ambient temperature are selected as parameters of the sensitivity study. The variation of seismic response of the bridge with considered parameters is assessed. The optimum values of the normalized yield strength and the yield displacement of the SMA device is found to be in the range of 0.20-0.25 and 40-50 mm, respectively. Also, the SMA/rubber-based isolation system is observed to be more effective when the SMA device is pre-stressed. In addition, it is found that ambient temperature considerably affects the performance of the bridge isolated by SMA/rubber-based isolators.
Smart Materials and Structures | 2015
Emre Acar; Osman E. Ozbulut; H.E. Karaca
This study explores the superelastic behavior of a recently developed Ni45.3Ti29.7Hf20Pd5 alloy that has more favorable mechanical properties (high strength and hysteresis) than many well-known shape-memory alloys. The effects of aging on the shape-memory properties of Ni45.3Ti29.7Hf20Pd5 polycrystalline alloys are revealed first. Next, the dependence of the superelastic response of an aged Ni45.3Ti29.7Hf20Pd5 alloy on the strain amplitude, loading rate, and test temperature are examined via uniaxial compression tests. Then, the superelastic response of a solutionized sample is compared with that of the aged sample. Finally, a soft-computing approach that employs neural networks and fuzzy logic is used to model the highly nonlinear behavior of Ni45.3Ti29.7Hf20Pd5 alloys by considering the loading rate and temperature effects. The tests results show that the solutionized sample has wider stress hysteresis, larger energy dissipation, and the equivalent viscous damping of the aged sample. It is found that the loading rate does not significantly influence the superelastic behavior of NiTiHfPd. In addition, an increase in temperature shifts the hysteresis loops upward, but results in no considerable change in damping characteristics.
Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation | 2014
Sherif M. Daghash; Osman E. Ozbulut; Muhammad M. Sherif
Shape memory alloys (SMAs) have attracted a great deal of attention as a smart material that can be used in various civil engineering applications due to their favorable mechanical properties such as ability to undergo large deformations, high corrosion and fatigue resistance, good energy dissipating capacity, and excellent re-centering ability. In contrast to the use of SMAs in the biomedical, mechanical and aerospace applications, which requires mostly small diameter of material, the larger size bars are usually needed in a civil engineering application. It is well known that properties of large-section SMA bars are generally poorer than those of wires due to difficulties in material processing. Furthermore, large diameter SMA bars are more expensive than thin SMA wires.Shape memory alloy cables have been recently developed as an alternative and new structural element. They leverage the superior mechanical characteristics of small diameter SMAs into large-size structural tension elements and possess several advantages over SMA bars. This study explores the performance of NiTi SMA cables and their potential use in civil engineering. The SMA cable, which has a diameter of 8 mm, is composed of 7 strands and each strand has 7 wires with a diameter of 0.885 mm. The uniaxial tensile tests are conducted at various loading rates and strain amplitudes to characterize the superelastic properties of the SMA cable and study the rate-dependent mechanical response of the SMA cable under dynamic loads. An optical digital image correlation measurement system and an infrared thermal imaging camera are employed to obtain the full-field strain and temperature fields. Potential applications of SMA cables in civil infrastructure applications are discussed and illustrated.Copyright
Proceedings of SPIE | 2009
Osman E. Ozbulut; Stefan Hurlebaus
This paper proposes a neuro-fuzzy model of NiTi shape memory alloy (SMA) wires that is capable of capturing behavior of superelastic SMAs at different temperatures and at various loading rates while remaining simple enough to realize numerical simulations. First, in order to collect data, uniaxial tensile tests are conducted on superelastic wires in the temperature range of 0 ºC to 40 ºC, and at the loading frequencies of 0.05 Hz to 2 Hz that is the range of interest for seismic applications. Then, an adaptive neuro-fuzzy inference system (ANFIS) is employed to construct a model of SMAs based on experimental input-output data pairs. The fuzzy model obtained from ANFIS training is validated by using an experimental data set that is not used during training. Upon having a model that can represent behavior of superelastic SMAs at various ambient temperature and loading-rates, nonlinear simulation of a multi-span continuous bridge isolated by rubber bearings that is equipped with SMA dampers is carried out. Response of the bridge to a historical earthquake record is presented at different ambient temperatures in order to evaluate the effect of temperature on the performance of the structure. It is shown that SMA damping elements can effectively decrease peak deck displacement and the relative displacement between piers and superstructure in an isolated bridge while recovering all the deformations to their original position.