Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osman M. Bakr is active.

Publication


Featured researches published by Osman M. Bakr.


Science | 2015

Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals

Dong Shi; Valerio Adinolfi; Riccardo Comin; Mingjian Yuan; Erkki Alarousu; Andrei Buin; Yin Chen; Sjoerd Hoogland; Alexander Rothenberger; Khabiboulakh Katsiev; Yaroslav Losovyj; Xin Zhang; Peter A. Dowben; Omar F. Mohammed; Edward H. Sargent; Osman M. Bakr

Large-crystal perovskite films The performance of organic-inorganic hybrid perovskite planar solar cells has steadily improved. One outstanding issue is that grain boundaries and defects in polycrystalline films degrade their output. Now, two studies report the growth of millimeter-scale single crystals. Nie et al. grew continuous, pinhole-free, thin iodochloride films with a hot-casting technique and report device efficiencies of 18%. Shi et al. used antisolvent vapor-assisted crystallization to grow millimeter-scale bromide and iodide cubic crystals with charge-carrier diffusion lengths exceeding 10 mm. Science, this issue p. 522, p. 519 Solution processing techniques enable the growth of high-quality, large-area perovskite crystals for solar cells. The fundamental properties and ultimate performance limits of organolead trihalide MAPbX3 (MA = CH3NH3+; X = Br– or I–) perovskites remain obscured by extensive disorder in polycrystalline MAPbX3 films. We report an antisolvent vapor-assisted crystallization approach that enables us to create sizable crack-free MAPbX3 single crystals with volumes exceeding 100 cubic millimeters. These large single crystals enabled a detailed characterization of their optical and charge transport characteristics. We observed exceptionally low trap-state densities on the order of 109 to 1010 per cubic centimeter in MAPbX3 single crystals (comparable to the best photovoltaic-quality silicon) and charge carrier diffusion lengths exceeding 10 micrometers. These results were validated with density functional theory calculations.


Nature Communications | 2015

High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

Makhsud I. Saidaminov; Ahmed L. Abdelhady; Banavoth Murali; Erkki Alarousu; Victor M. Burlakov; Wei Peng; Ibrahim Dursun; Lingfei Wang; Yao He; Giacomo Maculan; Alain Goriely; Tom Wu; Omar F. Mohammed; Osman M. Bakr

Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.


Chemical Reviews | 2015

Colloidal Quantum Dot Solar Cells.

Graham H. Carey; Ahmed L. Abdelhady; Zhijun Ning; Susanna M. Thon; Osman M. Bakr; Edward H. Sargent

Graham H. Carey,† Ahmed L. Abdelhady,‡ Zhijun Ning, Susanna M. Thon, Osman M. Bakr,‡ and Edward H. Sargent*,† †Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada ‡Division of Physical Sciences and Engineering, Solar & Photovoltaics Engineering Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States


Nature Materials | 2014

Air-stable n-type colloidal quantum dot solids.

Zhijun Ning; Oleksandr Voznyy; Jun Pan; Sjoerd Hoogland; Valerio Adinolfi; Jixian Xu; Min Li; Ahmad R. Kirmani; Jon-Paul Sun; James C. Minor; Kyle W. Kemp; Haopeng Dong; Lisa R. Rollny; André J. Labelle; Graham H. Carey; Brandon R. Sutherland; Ian G. Hill; Aram Amassian; Huan Liu; Jiang Tang; Osman M. Bakr; Edward H. Sargent

Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials.


Accounts of Chemical Research | 2016

Making and Breaking of Lead Halide Perovskites

Joseph S. Manser; Makhsud I. Saidaminov; Jeffrey A. Christians; Osman M. Bakr; Prashant V. Kamat

A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization kinetics can be tailored to yield improved thin film homogeneity. Because degradation of the as-formed perovskite film is in many ways analogous to its initial formation, the same suite of monitoring techniques reveals the moisture-induced transformation of low band gap methylammonium lead iodide (CH3NH3PbI3) to wide band gap hydrate compounds. The rate of degradation is increased upon exposure to light. Interestingly, the hydration process is reversible under certain conditions. This facile formation and subsequent chemical lability raises the question of whether CH3NH3PbI3 and its analogues are thermodynamically stable phases, thus posing a significant challenge to the development of transformative perovskite photovoltaics. Adequately addressing issues of structural and chemical stability under real-world operating conditions is paramount if perovskite solar cells are to make an impact beyond the benchtop. Expanding our fundamental knowledge of lead halide perovskite formation and degradation pathways can facilitate fabrication of stable, high-quality perovskite thin films for the next generation of photovoltaic and light emitting devices.


Nature Communications | 2015

Planar-integrated single-crystalline perovskite photodetectors

Makhsud I. Saidaminov; Valerio Adinolfi; Riccardo Comin; Ahmed L. Abdelhady; Wei Peng; Ibrahim Dursun; Mingjian Yuan; Sjoerd Hoogland; Edward H. Sargent; Osman M. Bakr

Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors.


Angewandte Chemie | 2009

Silver Nanoparticles with Broad Multiband Linear Optical Absorption

Osman M. Bakr; Vincenzo Amendola; Christine M. Aikens; Wim Wenseleers; Rui Li; Luca Dal Negro; George C. Schatz; Francesco Stellacci

Keywords: thiols ; cluster compounds ; luminescence ; quantum dots ; surface plasmon resonance Reference EPFL-ARTICLE-166610doi:10.1002/anie.200900298 Record created on 2011-06-06, modified on 2017-05-10


Journal of Physical Chemistry Letters | 2015

CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector

Giacomo Maculan; Arif D. Sheikh; Ahmed L. Abdelhady; Makhsud I. Saidaminov; Azimul Haque; Banavoth Murali; Erkki Alarousu; Omar F. Mohammed; Tom Wu; Osman M. Bakr

Single crystals of hybrid perovskites have shown remarkably improved physical properties compared to their polycrystalline film counterparts, underscoring their importance in the further development of advanced semiconductor devices. Here we present a new method of growing sizable CH3NH3PbCl3 single crystals based on the retrograde solubility behavior of hybrid perovskites. We show, for the first time, the energy band structure, charge recombination, and transport properties of CH3NH3PbCl3 single crystals. These crystals exhibit trap-state density, charge carrier concentration, mobility, and diffusion length comparable with the best quality crystals of methylammonium lead iodide or bromide perovskites reported so far. The high quality of the crystal along with its suitable optical band gap enabled us to build an efficient visible-blind UV-photodetector, demonstrating its potential in optoelectronic applications.


Nanoscale | 2014

A general mechanism for intracellular toxicity of metal-containing nanoparticles

Stefania Sabella; Randy P. Carney; Virgilio Brunetti; Maria Ada Malvindi; Noura Al-Juffali; Giuseppe Vecchio; Sam M. Janes; Osman M. Bakr; Roberto Cingolani; Francesco Stellacci; Pier Paolo Pompa

We demonstrate a general mechanism for the toxicity induced by metal-containing NPs, named “lysosome-enhanced Trojan horse effect”, which provides design rules to engineer safer NPs.


Journal of Physical Chemistry Letters | 2015

Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission

Jun Pan; Smritakshi P. Sarmah; Banavoth Murali; Ibrahim Dursun; Wei Peng; Manas R. Parida; Jiakai Liu; Lutfan Sinatra; Noktan M. AlYami; Chao Zhao; Erkki Alarousu; Tien Khee Ng; Boon S. Ooi; Osman M. Bakr; Omar F. Mohammed

We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic-organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 10(8) laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed.

Collaboration


Dive into the Osman M. Bakr's collaboration.

Top Co-Authors

Avatar

Omar F. Mohammed

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Makhsud I. Saidaminov

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Erkki Alarousu

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Pan

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ibrahim Dursun

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Lutfan Sinatra

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Manas R. Parida

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wei Peng

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Banavoth Murali

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Yin

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge