Osman Nuri Ergun
Ondokuz Mayıs University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Osman Nuri Ergun.
Waste Management | 2009
N. Gamze Turan; Semra Çoruh; Andaç Akdemir; Osman Nuri Ergun
Municipal solid waste (MSW) is a major environmental problem in Turkey, as in many developing countries. Problems associated with municipal solid waste are difficult to address, but efforts towards more efficient collection and transportation and environmentally acceptable waste disposal continue in Turkey. Although strict regulations on the management of solid waste are in place, primitive disposal methods such as open dumping and discharge into surface water have been used in various parts of Turkey. This study presents a brief history of the legislative trends in Turkey for MSW management. The study also presents the MSW responsibility and management structure together with the present situation of generation, composition, recycling, and treatment. The results show that approximately 25 million ton of MSW are generated annually in Turkey. About 77% of the population receives MSW services. In spite of efforts to change open dumping areas into sanitary landfills and to build modern recycling and composting facilities, Turkey still has over 2000 open dumps.
Journal of Hazardous Materials | 2010
Semra Çoruh; Osman Nuri Ergun
Increasing amounts of residues and waste materials coming from industrial activities in different processes have become an increasingly urgent problem for the future. The release of large quantities of heavy metals into the environment has resulted in a number of environmental problems. The present study investigated the safe disposal of the zinc leach residue waste using industrial residues such as fly ash, phosphogypsum and red mud. In the study, leachability of heavy metals from the zinc leach residue has been evaluated by mine water leaching procedure (MWLP) and toxicity characteristic leaching procedure (TCLP). Zinc removal from leachate was studied using fly ash, phosphogypsum and red mud. The adsorption capacities and adsorption efficiencies were determined. The adsorption rate data was analyzed according to the pseudo-second-order kinetic, Elovich kinetic and intra-particle diffusion kinetic models. The pseudo-second-order kinetic was the best fit kinetic model for the experimental data. The results show that addition of fly ash, phosphogypsum and red mud to the zinc leach residue drastically reduces the heavy metal content in the leachate and could be used as liner materials.
Journal of Hazardous Materials | 2010
Semra Çoruh; Gaye Şenel; Osman Nuri Ergun
The aim of the present study is to investigate the removal of silver ions from aqueous solutions using natural clinoptilolites collected from Cankiri-Corum and Manisa-Gördes regions of Turkey. The optimum conditions for adsorption/ion exchange by using a batch method were evaluated by changing various parameters such as particle size, contact time, initial pH of the solution, adsorbent amount, initial metal concentration and acidic treatment. The Langmuir, Freundlich and Temkin adsorption isotherm equations were derived form the basic empirical equations, and used for calculation of adsorption parameters. The equilibrium data fit well the Freundlich and Langmuir isotherm. The adsorption capacities of Cankiri-Corum and Manisa-Gördes clinoptilolites as obtained from Langmuir isotherm were found to be 31.44 and 22.57 mg/g. The adsorption kinetic rates and metal recoveries were estimated by pseudo-first order, second order and intra-particle models.
Waste Management & Research | 2006
Semra Çoruh; Osman Nuri Ergun; Ta-Wui Cheng
Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850°C/2 h have a large application potential especially as construction and building materials.
Environmental Technology | 2011
Semra Çoruh; Feza Geyikçi; Osman Nuri Ergun
Red mud, an industrial by‐product generated during the processing of bauxite ore, was investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue from aqueous solution. Chemical and heat treatments were applied to the raw red mud. The effects of contact time, adsorbent amount, pH, temperature and initial dye concentration were investigated. The adsorption isotherm and kinetics of the raw and activated red mud were studied. Freundlich, Temkin and Dubinin–Radushkevich isotherms were obtained using concentrations of methylene blue ranging from 10 to 70 mg/L. The results indicated that the Dubinin–Radushkevich model provides the best correlation of the experimental data. The adsorption rate data were analysed according to the pseudo‐first order kinetic, pseudo‐second order kinetic, intraparticle diffusion kinetic and Elovich kinetic models. The pseudo‐second order kinetic was the best fit kinetic model for the experimental data.
Journal of Hazardous Materials | 2009
N. Gamze Turan; Osman Nuri Ergun
All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.
Waste Management & Research | 2006
Emel Ozel; Servet Turan; Semra Çoruh; Osman Nuri Ergun
One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.
Bioresource Technology | 2009
N.G. Turan; A. Akdemir; Osman Nuri Ergun
The objective of this study was to reduce volatile organic compounds (VOCs) produced during composting of poultry litter. The natural zeolite, expanded perlite, pumice and expanded vermiculite as the natural materials were used for the reducing of VOCs. Composting was performed in a laboratory scale in-vessel composting plant. Poultry litter was composted for 100 d with volumetric ratio of natural materials:poultry litter of 1:10. The VOCs were tested using the FT-IR method by VOCs analyzer. Studies showed that VOCs generation was the greatest in the control treatment without any natural materials. The natural materials significantly reduced VOCs. At the end of the processes, removal efficiency was 79.73% for NZ treatment, 54.59% for EP treatment, 88.22% for P treatment and 61.53% for EV treatment. Potential of removal for VOCs on poultry litter matrix using natural materials was in order of: P>NZ>EV>EP.
Waste Management & Research | 2009
Basşak Mesci; Semra Çoruh; Osman Nuri Ergun
This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.
International Journal of Environmental Research and Public Health | 2012
Ummukulsum Ozel; Andaç Akdemir; Osman Nuri Ergun
The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%).