Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osman Parlak is active.

Publication


Featured researches published by Osman Parlak.


Petroleum Geoscience | 2012

Overview of the Palaeozoic–Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria)

Alastair H. F. Robertson; Osman Parlak; Timur Ustaömer

Valid palaeotectonic and palaeogeographical reconstructions of the easternmost Mediterranean and adjacent region involve a long-lived Tethys (Rheic, Palaeotethyan and Neotethyan oceans), northward subduction beneath Eurasia and rifting of continental fragments from Gondwana. Rifted microcontinents bordering Gondwana were separated (from south to north) by the Southern Neotethyan ocean, the Berit ocean (new name), the Inner Tauride ocean and the İzmir–Arkara–Erzincan ocean. Mid-Permian to Mid-Triassic pulsed rifting culminated in Late Triassic–Early Jurassic spreading of the Southern Neotethyan oceans (the main focus here). After Early–Mid-Jurassic passive subsidence, the Late Jurassic–Early Cretaceous was characterized by localized alkaline, within-plate magmatism related to plume activity or renewed rifting. Late Cretaceous ophiolites formed above subduction zones in several oceanic basins. Ophiolites were emplaced southwards onto the Tauride and Arabian platforms during the latest Cretaceous. The Southern Neotethys sutured with the Arabian margin during the Early–Middle Miocene, while oceanic crust remained in the Eastern Mediterranean further west. The leading edge of the North African continental margin, the Eratosthenes Seamount, collided with a subduction trench south of Cyprus during the Late Pliocene–Pleistocene, triggering rapid uplift. Coeval Plio-Quaternary uplift of the Taurides may relate to break-off or delamination of a remnant oceanic slab.


Geological Society, London, Special Publications | 2007

Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elaziğ region, SE Turkey)

Alastair H. F. Robertson; Osman Parlak; Tamer Rızaoğlu; Ü. Ünlügenç; Nurdan Inan; Kemal Tasli; Timur Ustaömer

Abstract Geological information from the Eastern Taurus Mountains, part of the Tethyan (South Neotethyan) suture zone exposed in the Elaziğ region, is used here to test existing tectonic hypotheses and to develop a new tectonic model. Five main tectonic stages are identified: (1) Mid-Late Triassic rifting-spreading of Southern Neotethys; (2) Late Cretaceous northward subduction-accretion of ophiolites and arc-related units; (3) Mid-Eocene subduction-related extension; (4) Early-Mid-Miocene collision and southward thrusting over the Arabian Foreland; (6) Plio-Quaternary, post-collisional left-lateral tectonic escape. During the Late Cretaceous (c. 90 Ma) northward intra-oceanic subduction generated regionally extensive oceanic lithosphere as the İspendere, Kömürhan, Guleman and Killan ophiolites of supra-subduction zone type. A northward-dipping subduction zone was activated along the northern margin of the ocean basin (Keban Platform), followed by accretion of Upper Cretaceous ophiolites in latest Cretaceous time. As subduction continued the accreted ophiolites and overriding northern margin (Keban Platform) were intruded by calc-alkaline plutons, still during latest Cretaceous time. The northern margin was covered by shallow-marine mixed clastic-carbonate sediments in latest Cretaceous-Early Palaeogene time. Northward subduction during the Mid-Eocene was accompanied by extension of the northern continental margin, generating large fault-bounded, extensional basins that were infilled with shallow- to deep-water sediments and subduction-influenced volcanic rocks (Maden Group). Thick debris flows (‘olistostromes’) accumulated along the oceanward edge of the active margin. The partly assembled allochthon finally collided with the Arabian continental margin to the south during Early-Mid-Miocene time in response to oblique convergence; the entire thrust stack was then emplaced southwards over the downflexed Arabian Foreland. Left-lateral strike-slip (tectonic escape) along the East Anatolian Fault Zone ensued.


Geological Society, London, Special Publications | 2000

Suprasubduction Zone Origin of the Pozanti-Karsanti Ophiolite (Southern Turkey) Deduced from Whole-rock and Mineral Chemistry of the Gabbroic Cumulates

Osman Parlak; Volker Höck; Michel Delaloye

Abstract The Pozanti-Karsanti Ophiolite Complex is situated in the eastern Tauride Belt and represents a remnant of the Mesozoic Neotethyan Ocean. It consists of three distinct nappes: (1) an ophiolitic mélange; (2) a metamorphic sole; and (3) ophiolitic rocks. The oceanic lithosphere section of the Pozanti-Karsanti Ophiolite comprises mantle tectonites, ultramafic-mafic cumulates, isotropic gabbros, sheeted dykes and basaltic volcanic rocks. These units are cut by isolated microgabbro-diabase dykes at all structural levels. New results are presented on the whole-rock and mineral chemistry of the gabbroic cumulates. Well-layered, low-Ti gabbroic cumulates, showing adcumulate to mesocumulate textures, are represented exclusively by gabbronorites. The mineral chemistry of gabbronorites from the Pozanti-Karsanti Ophiolite indicates that these cumulate rocks have been produced by the low-pressure crystal fractionation of basaltic liquid. Magnesium numbers (Mg-numbers) of clinopyroxene, orthopyroxene and amphibole range from 89 to 73, 80–66 and 80–72, respectively. Plagioclase compositions range from An94 to An84. The coexistence of calcic plagioclase, magnesian clinopyroxene and orthopyroxene indicates that the cumulate gabbronorites from the Pozanti-Karsanti Ophiolite were formed in an arc environment. The covariation of Al2O3 and Mg-numbers of both clinopyroxene and orthopyroxene show features typical of low-pressure igneous intrusions such as the Skaergaard and Tonsina Complexes, but differ from the high-pressure ultramafic cumulates found in the same arc. The cumulate gabbronorites probably represent shallower levels in the arc which were subsequently juxtaposed against deeper level ultramafic cumulates either during accretion or later faulting.


Geological Society, London, Special Publications | 2009

Melange genesis and ophiolite emplacement related to subduction of the northern margin of the Tauride–Anatolide continent, central and western Turkey

Alastair H. F. Robertson; Osman Parlak; Tı̇mur Ustaömer

Abstract The Tauride–Anatolide continent, stretching for c. 900 km across western and central Turkey, is one of the worlds best example of a subducted, exhumed passive margin within a collisional orogen. Twelve widely separated areas were studied and correlated to develop a new plate-tectonic model. A metamorphosed, rifted continental margin of Triassic–Lower Cretaceous age (Tauride–Anatolide platform) is overlain by Upper Cretaceous (Cenomanian-Lower Maastrichtian) pelagic sediments and then by both tectonic melange (subduction complexes) and sedimentary melange (foredeep gravity complexes). The melanges are overthrust by unmetamorphosed ophiolitic rocks, commonly peridotites with swarms of diabase/gabbro dykes, and are underlain by metamorphic soles. New geochemical evidence from basaltic blocks in the melange indicates predominantly subduction influenced, within-plate and mid-ocean ridge-type settings. The dykes cutting the ophiolites were probably intruded during early-stage intra-oceanic arc genesis. The metamorphosed continental margin, melanges and ophiolites in the north (Anatolides) are correlated with unmetamorphosed equivalents in the Taurides further south (e.g. Beyşehir and Lycian nappes). Oceanic crust of Triassic–Late Cretaceous age formed between the Gondwana-related Tauride–Anatolide continent in the south and the Eurasia-related Sakarya microcontinent in the north. Following Late Triassic–Early Cretaceous passive margin subsidence, the continental margin was covered by Cenomanian-Turonian pelagic carbonates (c. 98–90 Ma). Ophiolites formed in an intra-oceanic subduction zone setting in response to northward subduction, probably within a two-stranded ocean, with the Inner Tauride ocean in the SE and the İzmir–Ankara–Erzincan ocean in the north/NW. Metamorphic soles relate to intra-oceanic subduction (c. 95–90 Ma). Oceanic sedimentary/igneous rocks accreted to the advancing supra-subduction oceanic slab. The Tauride–Anatolide continental margin then underwent diachronous collision with the trench (c. 85 Ma), deeply subducted and metamorphosed at HP/LT (c. 80 Ma). Accretionary, ophiolitic and exhumed HP/LT rocks were gravity reworked into a southward-migrating flexural foredeep and progressively overridden (c. 70–63 Ma). Slices of the upper part of the platform and its margin detached and were thrust southwards as the (Tauride) Lycian and Beyşehir nappes, together with regional-scale ophiolites. The continental margin and melange were simultaneously exhumed during Maastrichtian–Early Paleocene (70–63 Ma) and transgressed by shallow-water sediments, beginning in the Late Maastrichtian in the east (c. 64 Ma) and the Mid?-Late Paleocene (c. 60 Ma) further west. Remnant oceanic crust was consumed during Early Cenozoic time, followed by Mid Eocene (45–40 Ma) diachronous continental collision and a second phase of regional deformation. Rather than being progressive there were two stages of collision: first, Upper Cretaceous ophiolite emplacement driven by continental margin-subduction trench collision, and secondly Eocene collision of the Tauride and Sakarya/Eurasian continents.


Geological Journal | 1999

Terlemez quartz monzonite of Central Anatolia (Aksaray–Sarıkaraman): age, petrogenesis and geotectonic implications for ophiolite emplacement

Kenan M. Yaliniz; Nurdan S. Aydin; M. Cemal Göncüoglu; Osman Parlak

KENAN M. YALINIZ, NURDAN S. AYDIN, M. CEMAL GOENCUEOGAE LU* and OSMAN PARLAK Department of Civil Engineering, Celal Bayar University, Muradiye, Manisa, Turkey Department of Earth Sciences, The University of Hong Kong, Hong Kong Department of Geological Engineering, Middle East Technical University, TR-06531 Ankara, Turkey Department of Geological Engineering, CE ukurova University, Balcalo, TR-01330 Adana, Turkey


Mineralogical Magazine | 2005

Whole-rock and mineral chemistry of cumulates from the Kızıldağ (Hatay) ophiolite (Turkey): clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean

Utku Bağci; Osman Parlak; Volker Höck

Abstract The late Cretaceous Kızıldağ ophiolite forms one of the best exposures of oceanic lithospheric remnants of southern Neotethys to the north of the Arabian promontory in Turkey. The ultramafic to mafic cumulate rocks, displaying variable thickness (ranging from 165 to 700 m), are ductiley deformed, possibly in response to syn-magmatic extension during sea-floor spreading and characterized by wehrlite, olivine gabbro, olivine gabbronorite and gabbro. The gabbroic cumulates have an intrusive contact with the wehrlitic cumulates in some places. The crystallization order of the cumulus and intercumulus phases is olivine (Fo86−77)±chromian spinel, clinopyroxene (Mg#92−76), plagio- clase(An95−83), orthopyroxene(Mg#87−79). The olivine, clinopyroxene, orthopyroxene and plagioclase in ultramafic and mafic cumulate rocks seem to have similar compositional range. This suggests that these rocks cannot represent a simple crystal line of descent. Instead the overlapping ranges in mineral compositions in different rock types suggest multiple magma generation during crustal accretion for the Kızıldağ ophiolite. The presence of high Mg# of olivine, clinopyroxene, orthopyroxene, and the absence of Ca-rich plagioclase as an early fractionating phase co-precipitating with forsteritic olivine, suggest that the Kızıldağ plutonic suite is not likely to have originated in a mid-ocean ridge environment. Instead the whole-rock and mineral chemistry of the cumulates indicates their derivation from an island arc tholeiitic (IAT) magma. All the evidence indicates that the Kızıldağ ophiolite formed along a slow-spreading centre in a fore-arc region of a suprasubduction zone tectonic setting.


Geodinamica Acta | 2013

Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: new evidence from the Eastern Pontides, Turkey

Alastair H. F. Robertson; Osman Parlak; Timur Ustaömer; Kemal Tasli; Nurdan Inan; Paulian Dumitrica; Fatih Karaoğlan

This paper presents several types of new information including U–Pb radiometric dating of ophiolitic rocks and an intrusive granite, micropalaeontological dating of siliceous and calcareous sedimentary rocks, together with sedimentological, petrographic and structural data. The new information is synthesised with existing results from the study area and adjacent regions (Central Pontides and Lesser Caucasus) to produce a new tectonic model for the Mesozoic–Cenozoic tectonic development of this key Tethyan suture zone. The Tethyan suture zone in NE Turkey (Ankara–Erzincan–Kars suture zone) exemplifies stages in the subduction, suturing and post-collisional deformation of a Mesozoic ocean basin that existed between the Eurasian (Pontide) and Gondwanan (Tauride) continents. Ophiolitic rocks, both as intact and as dismembered sequences, together with an intrusive granite (tonalite), formed during the Early Jurassic in a supra-subduction zone (SSZ) setting within the İzmir–Ankara–Erzincan ocean. Basalts also occur as blocks and dismembered thrust sheets within Cretaceous accretionary melange. During the Early Jurassic, these basalts erupted in both a SSZ-type setting and in an intra-plate (seamount-type) setting. The volcanic-sedimentary melange accreted in an open-ocean setting in response to Cretaceous northward subduction beneath a backstop made up of Early Jurassic forearc ophiolitic crust. The Early Jurassic SSZ basalts in the melange were later detached from the overriding Early Jurassic ophiolitic crust. Sedimentary melange (debris-flow deposits) locally includes ophiolitic extrusive rocks of boninitic composition that were metamorphosed under high-pressure low-temperature conditions. Slices of mainly Cretaceous clastic sedimentary rocks within the suture zone are interpreted as a deformed forearc basin that bordered the Eurasian active margin. The basin received a copious supply of sediments derived from Late Cretaceous arc volcanism together with input of ophiolitic detritus from accreted oceanic crust. Accretionary melange was emplaced southwards onto the leading edge of the Tauride continent (Munzur Massif) during latest Cretaceous time. Accretionary melange was also emplaced northwards over the collapsed southern edge of the Eurasian continental margin (continental backstop) during the latest Cretaceous. Sedimentation persisted into the Early Eocene in more northerly areas of the Eurasian margin. Collision of the Tauride and Eurasian continents took place progressively during latest Late Palaeocene–Early Eocene. The Jurassic SSZ ophiolites and the Cretaceous accretionary melange finally docked with the Eurasian margin. Coarse clastic sediments were shed from the uplifted Eurasian margin and infilled a narrow peripheral basin. Gravity flows accumulated in thrust-top piggyback basins above accretionary melange and dismembered ophiolites and also in a post-collisional peripheral basin above Eurasian crust. Thickening of the accretionary wedge triggered large-scale out-of-sequence thrusting and re-thrusting of continental margin and ophiolitic units. Collision culminated in detachment and northward thrusting on a regional scale. Collisional deformation of the suture zone ended prior to the Mid-Eocene (~45 Ma) when the Eurasian margin was transgressed by non-marine and/or shallow-marine sediments. The foreland became volcanically active and subsided strongly during Mid-Eocene, possibly related to post-collisional slab rollback and/or delamination. The present structure and morphology of the suture zone was strongly influenced by several phases of mostly S-directed suture zone tightening (Late Eocene; pre-Pliocene), possible slab break-off and right-lateral strike-slip along the North Anatolian Transform Fault. In the wider regional context, a double subduction zone model is preferred, in which northward subduction was active during the Jurassic and Cretaceous, both within the Tethyan ocean and bordering the Eurasian continental margin.


Geological Society, London, Special Publications | 2013

Late Palaeozoic–Early Cenozoic tectonic development of Southern Turkey and the easternmost Mediterranean region: evidence from the inter-relations of continental and oceanic units

Alastair H. F. Robertson; Osman Parlak; Timur Ustaömer

Abstract Reconstructions of the Anatolian continent and adjacent areas assume the existence of one or more continental fragments during Mesozoic–Early Cenozoic time. These rifted from North Africa (Gondwana) during the Triassic, drifted across the Mesozoic Tethys and collided with Eurasia during latest Cretaceous–Paleocene time. Current reconstructions range from a regional-scale Tauride–Anatolide continent with oceanic basins to the north and south, to numerous rifted continental fragments separated by small oceanic basins. Field-based evidence for the inter-relations of the continental blocks and associated carbonate platforms is discussed and evaluated here, especially to distinguish between sutured oceans and intra-continental convergence zones. Several crustal units are restored as different parts of one large Tauride–Anatolide continent, whereas several smaller crustal units (e.g. Kırşehir massif; Bitlis/Pütürge and Alanya/Kyrenia units) are interpreted as continental fragments bordered by oceanic crust. We infer a relatively wide İzmir–Ankara–Erzincan ocean in the north and also a wide South Neotethyan ocean in the south. Several smaller oceanic strands (e.g. Inner Tauride ocean, Berit ocean and Alanya ocean) were separated by continental fragments. Our proposed reconstructions are shown on palaeotectonic maps for Late Permian to Mid-Miocene. The reconstructions have interesting implications for crustal processes, including ophiolite genesis and emplacement.


Geological Magazine | 2013

U–Pb and Sm–Nd geochronology of the Kızıldağ (Hatay, Turkey) ophiolite: implications for the timing and duration of suprasubduction zone type oceanic crust formation in the southern Neotethys

Fatih Karaoğlan; Osman Parlak; Urs Klötzli; Martin Thöni; Friedrich Koller

The Kizildag (Hatay) ophiolite in Turkey represents remnants of the southern Neotethyan ocean and is characterized by a complete ocean lithospheric section. It formed in a fore-arc setting above a N-dipping intraoceanic subduction zone, and represents the undeformed, more northerly part of the same thrust sheet that also forms the Baer–Bassit ophiolite to the south. The ophiolite was emplaced southwards from the southerly Neotethyan ocean in Maastrichtian time. U–Pb and Sm–Nd dates are used to constrain the crystallization age and duration of magmatic activity of the Kizildag ophiolite. U–Pb dating yielded ages of 91.7 ± 1.9 Ma for a plagiogranite and 91.6 ± 3.8 Ma for a cumulate gabbro. The cumulate gabbro also yielded a Sm–Nd isochron age of 95.3 ± 6.9 Ma. The measured ages suggest that the oceanic crust of the Kizildag ophiolite formed in a maximum time period of 6 Ma, and that the plagiogranite may have formed later than the gabbroic section. The U–Pb zircon ages from the Kizildag ophiolite and the cooling age of a metamorphic sole beneath the Baer–Bassit ophiolite are indistinguishable within the analytical uncertainties. This indicates the presence of young and hot oceanic lithosphere at the time of intraoceanic subduction/thrusting in the southern Neotethys. The U–Pb zircon ages from the Kizildag, the Troodos and the Semail ophiolites overlap within analytical uncertainties, suggesting that these ophiolites are contemporaneous and genetically and tectonically related within the same Late Cretaceous southern Neotethyan ocean.


Geodinamica Acta | 2012

U–Pb and Sm–Nd geochronology of the ophiolites from the SE Turkey: implications for the Neotethyan evolution

Fatih Karaoğlan; Osman Parlak; Urs Klötzli; Martin Thöni; Friedrich Koller

The ophiolites in southeast Turkey crop out along two distinct belts. The ophiolites in the north are attached to Tauride active margin and represented by Göksun, Berit, İspendere, Kömürhan and Guleman ophiolites. Whereas the ophiolites in the south are observed as tectonically overlying the Arabian continental margin and characterized mainly by Kızıldağ (Hatay) and Koçali ophiolites. In this paper, new U–Pb and Sm–Nd isotopic ages are presented. The zircons extracted from the gabbroic cumulates of the Kömürhan ophiolite yielded a concordia age of 87.2 ± 3.1 Ma. The zircons in the gabbroic cumulates of the İspendere ophiolite yielded a Concordia age of 84.5 ± 3.9 Ma. Moreover, the Sm–Nd age of the gabbroic cumulates of the İspendere ophiolite yielded 85.1 ± 7.1 Ma (εNd =  + 7.8). The gabbroic rocks of the Kızıldağ (Hatay) ophiolite yielded 110 ± 11 Ma (εNd =  + 7.3) Sm–Nd isochron age. The new and already published U–Pb and Sm–Nd ages from the Kızıldağ ophiolite suggest that the time span between the melt generation in a subduction zone setting and SSZ-type oceanic crust crystallization was ≥3 my. All the ages from the Southeast Anatolian ophiolites suggest that the ophiolites between the Bitlis–Pütürge continent and the Arabian platform formed around 99–102 Ma whereas the ophiolites between the Bitlis–Pütürge continent and the Tauride platform formed around 84–90 Ma, suggesting that the peri-Arabic belt ophiolites are 10 My older than the ophiolite attached to the Malatya–Keban platform in the north. Detailed comparison suggests that there are number of differences between the ophiolites to the north and south of the Bitlis–Pütürge continental unit based on the geological, geochronological, petrological, internal stratigraphy of the ophiolites as well as their relationships with the continental fragments during the late Cretaceous. Therefore, the ophiolites were rooted from two different oceanic basins, one to the north and other to the south of the Bitlis–Pütürge continent.

Collaboration


Dive into the Osman Parlak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamer Rızaoğlu

Kahramanmaraş Sütçü İmam University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge