Ossama A. Hatoum
Technion – Israel Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ossama A. Hatoum.
Gastroenterology | 2003
Ossama A. Hatoum; David G. Binion; Mary F. Otterson; David D. Gutterman
BACKGROUND & AIMS Inflammatory bowel disease (IBD; i.e., Crohns disease, ulcerative colitis) is characterized by refractory inflammatory ulceration and damage to the intestine. Mechanisms underlying impaired healing are not defined. Because microvascular dysfunction resulting in diminished vasodilatory capacity and tissue hypoperfusion is associated with impaired wound healing, we hypothesized that microvascular dysfunction may also occur in chronic IBD. METHODS Intact submucosal arterioles from control, involved, and uninvolved IBD specimens were assessed using in vitro videomicroscopy to assess endothelium-dependent vasodilation in response to acetylcholine (Ach) and fluorescence microscopy to detect oxyradicals. RESULTS Normal microvessels dilated in a dose-dependent and endothelium-dependent manner to Ach (maximum, 82% +/- 2%; n = 34). Inhibition of nitric oxide synthase with N(G)-nitro-L-arginine methyl ester (L-NAME) reduced maximal dilation to 54% +/- 6% (P < 0.05, n = 7), and further reduction was observed after inhibiting cyclooxygenase (indomethacin; 23% +/- 10%, n = 6). Chronically inflamed IBD microvessels showed significantly reduced Ach-induced vasodilation (maximum, 15% +/- 2%; n = 33), with no effect of L-NAME. Indomethacin eliminated the remaining Ach-induced vasodilation, resulting in frank vasoconstriction (-54% +/- 9%, n = 6). Uninvolved IBD gut vessels and non-IBD inflammatory controls responded in a fashion similar to normal vessels. IBD-involved microvessels generated significantly higher levels of reactive oxygen species compared with control and uninvolved IBD vessels (P < 0.01). CONCLUSIONS Human intestinal microvessels from chronically inflamed IBD show microvascular endothelial dysfunction, characterized by loss of NO-dependent dilation that may contribute to reduced perfusion, poor wound healing, and maintenance of chronic inflammation.
Journal of Clinical Investigation | 2008
Kazuyoshi Toyama; Heike Wulff; K. George Chandy; Philippe Azam; Girija Raman; Takashi Saito; Yoshimasa Fujiwara; David L. Mattson; Satarupa Das; James E. Melvin; Phillip F. Pratt; Ossama A. Hatoum; David D. Gutterman; David R. Harder; Hiroto Miura
Atherosclerosis remains a major cause of death in the developed world despite the success of therapies that lower cholesterol and BP. The intermediate-conductance calcium-activated potassium channel KCa3.1 is expressed in multiple cell types implicated in atherogenesis, and pharmacological blockade of this channel inhibits VSMC and lymphocyte activation in rats and mice. We found that coronary vessels from patients with coronary artery disease expressed elevated levels of KCa3.1. In Apoe(-/-) mice, a genetic model of atherosclerosis, KCa3.1 expression was elevated in the VSMCs, macrophages, and T lymphocytes that infiltrated atherosclerotic lesions. Selective pharmacological blockade and gene silencing of KCa3.1 suppressed proliferation, migration, and oxidative stress of human VSMCs. Furthermore, VSMC proliferation and macrophage activation were reduced in KCa3.1(-/-) mice. In vivo therapy with 2 KCa3.1 blockers, TRAM-34 and clotrimazole, significantly reduced the development of atherosclerosis in aortas of Apoe(-/-) mice by suppressing VSMC proliferation and migration into plaques, decreasing infiltration of plaques by macrophages and T lymphocytes, and reducing oxidative stress. Therapeutic concentrations of TRAM-34 in mice caused no discernible toxicity after repeated dosing and did not compromise the immune response to influenza virus. These data suggest that KCa3.1 blockers represent a promising therapeutic strategy for atherosclerosis.
Circulation | 2003
Jingsong Ou; Zhijun Ou; Deron W. Jones; Sandra L. Holzhauer; Ossama A. Hatoum; Allan W. Ackerman; Dorothee Weihrauch; David D. Gutterman; Karen S. Guice; Keith T. Oldham; Cheryl A. Hillery; Kirkwood A. Pritchard
Background—Hypercholesterolemia and sickle cell disease (SCD) impair endothelium-dependent vasodilation by dissimilar mechanisms. Hypercholesterolemia impairs vasodilation by a low-density lipoprotein (LDL)–dependent mechanism. SCD has been characterized as a chronic state of inflammation in which xanthine oxidase (XO) from ischemic tissues increases vascular superoxide anion (O2·−) generation. Recent reports indicate that apolipoprotein (apo) A-1 mimetics inhibit atherosclerosis in LDL receptor–null (Ldlr−/−) mice fed Western diets. Here we hypothesize that L-4F, an apoA-1 mimetic, preserves vasodilation in hypercholesterolemia and SCD by decreasing mechanisms that increase O2·− generation. Methods and Results—Arterioles were isolated from hypercholesterolemic Ldlr−/− mice and from SCD mice that were treated with either saline or L-4F (1 mg/kg per day). Vasodilation in response to acetylcholine was determined by videomicroscopy. Effects of L-4F on LDL-induced increases in endothelium-dependent O2·− generation were determined on arterial segments via the hydroethidine assay and on stimulated endothelial cell cultures via superoxide dismutase–inhibitable ferricytochrome c reduction. Effects of L-4F on XO bound to pulmonary arterioles and content in livers of SCD mice were determined by immunofluorescence. Hypercholesterolemia impaired vasodilation in Ldlr−/− mice, which L-4F dramatically improved. L-4F inhibited LDL-induced increases in O2·− in arterial segments and in stimulated cultures. SCD impaired vasodilation, increased XO bound to pulmonary endothelium, and decreased liver XO content. L-4F dramatically improved vasodilation, decreased XO bound to pulmonary endothelium, and increased liver XO content compared with levels in untreated SCD mice. Conclusions—These data show that L-4F protects endothelium-dependent vasodilation in hypercholesterolemia and SCD. Our findings suggest that L-4F restores vascular endothelial function in diverse models of disease and may be applicable to treating a variety of vascular diseases.
Molecular and Cellular Biology | 1998
Ossama A. Hatoum; Shlomit Gross-Mesilaty; Kristin Breitschopf; Aviad Hoffman; Hedva Gonen; Aaron Ciechanover; Eyal Bengal
ABSTRACT MyoD is a tissue-specific transcriptional activator that acts as a master switch for skeletal muscle differentiation. Its activity is induced during the transition from proliferating, nondifferentiated myoblasts to resting, well-differentiated myotubes. Like many other transcriptional regulators, it is a short-lived protein; however, the targeting proteolytic pathway and the underlying regulatory mechanisms involved in the process have remained obscure. It has recently been shown that many short-lived regulatory proteins are degraded by the ubiquitin system. Degradation of a protein by the ubiquitin system proceeds via two distinct and successive steps, conjugation of multiple molecules of ubiquitin to the target protein and degradation of the tagged substrate by the 26S proteasome. Here we show that MyoD is degraded by the ubiquitin system both in vivo and in vitro. In intact cells, the degradation is inhibited by lactacystin, a specific inhibitor of the 26S proteasome. Inhibition is accompanied by accumulation of high-molecular-mass MyoD-ubiquitin conjugates. In a cell-free system, the proteolytic process requires both ATP and ubiquitin and, like the in vivo process, is preceded by formation of ubiquitin conjugates of the transcription factor. Interestingly, the process is inhibited by the specific DNA sequence to which MyoD binds: conjugation and degradation of a MyoD mutant protein which lacks the DNA-binding domain are not inhibited. The inhibitory effect of the DNA requires the formation of a complex between the DNA and the MyoD protein. Id1, which inhibits the binding of MyoD complexes to DNA, abrogates the effect of DNA on stabilization of the protein.
Inflammatory Bowel Diseases | 2005
Ossama A. Hatoum; David G. Binion
Although the human inflammatory bowel diseases (IBDs), Crohn’s disease (CD), and ulcerative colitis (UC) are well-known inflammatory disorders that are characterized by progressive destructive inflammation in the gastrointestinal tract, their etiology and promulgating factors remain a mystery. Recently, vasculopathy is being implicated in these disease processes in an increasing number of studies. Chronically inflamed IBD microvessels have demonstrated significant alterations in microvascular physiology and function compared with vessels from healthy and uninvolved IBD intestine. The microcirculation and its endothelial lining play a central role in the initiation and perpetuation of the inflammatory process, and investigation into human IBD has demonstrated an important role for the endothelium in both normal mucosal immunity as well as the dysregulated chronic inflammation characterizing IBD. Chronically inflamed IBD microvessels demonstrate an enhanced capacity to adhere leukocytes after inflammatory activation and have alterations in selective leukocyte recruitment compared with uninvolved areas of bowel. In addition to the role of the vasculature in leukocyte recruitment, both forms of IBD are characterized by refractory mucosal damage and ulceration with an impaired capacity to heal. Previous work has demonstrated an abnormal, remodeled vascular architecture characterized by stenotic microvessels in chronically inflamed CD and UC lesions. This would suggest chronic ischemia in the IBD gut. Human in vivo investigation has demonstrated a significant decrease in mucosal intestinal microvascular perfusion in chronic IBD gut inflammation. Significantly impaired endothelial-dependent microvascular vasorelaxation in chronically inflamed CD and UC bowel has been defined recently. In this work we review the role of the microvasculature in human chronic intestinal inflammation in IBD, our present understanding of the vasculature in disease etiopathogenesis, and the emerging IBD therapies, target the vasculature.
Shock | 2006
John C. Densmore; Paul Signorino; Jingsong Ou; Ossama A. Hatoum; J. Jordi Rowe; Yang Shi; Sushma Kaul; Deron W. Jones; Robert E. Sabina; Kirkwood A. Pritchard; Karen S. Guice; Keith T. Oldham
ABSTRACT Acute lung injury (ALI) carries a high mortality in critically ill patients. Recent reports correlate elevated concentrations of endothelium-derived microparticles (EMPs) with diseases of endothelial dysfunction. Many of these diseases have ALI sequelae. We hypothesize that EMPs contribute to endothelial cell (EC) dysfunction and development of ALI. To test this hypothesis, we treated isolated vessels with EMPs and examined changes in vasodilation. Endothelial cell cultures were incubated with EMPs and examined for changes in stimulated nitric oxide (•NO) production and nitric oxide synthase (eNOS) activation. Finally, EMPs were injected into rats and mice and lungs examined for ALI. In both mouse and human ex vivo vessel preparations, we found a marked attenuation of endothelium-mediated vasodilation after EMP treatment (4 × 106/mL). This dysfunction was not corrected by pretreatment of EMPs with free radical scavengers. Coincubation of EMPs with EC cultures yielded a three-fold reduction in A23187-stimulated •NO release. Western analysis of these cells showed a corresponding decrease in eNOS phosphorylation at Ser1179 and a decrease in hsp90 association. Measurements of lung permeability, myeloperoxidase activity, and histology of EMPs-treated Brown Norway rats demonstrated pulmonary edema, neutrophil recruitment, and compromise of the endothelial-alveolar barrier as a second hit phenomenon. In C57BL/6 mice, exogenous EMPs caused a significant rise in pulmonary capillary permeability both as a primary and secondary injury. These findings demonstrate EMPs are capable of inducing significant lung injury at pathophysiologically relevant concentrations. Endothelium-derived microparticles inhibit endothelium-mediated vasodilation and •NO generation from eNOS. Once elucidated, EMP mechanisms of inducing ALI and endothelial dysfunction may present new therapeutic targets.
European Journal of Clinical Investigation | 2006
Brandon T. Larsen; David D. Gutterman; Ossama A. Hatoum
The importance of endothelium‐derived nitric oxide in coronary vascular regulation is well‐established and the loss of this vasodilator compound is associated with endothelial dysfunction, tissue hypoperfusion and atherosclerosis. Numerous studies indicate that the endothelium produces another class of compounds, the epoxyeicosatrienoic acids (EETs), which may partially compensate for the loss of nitric oxide in cardiovascular disease. The EETs are endogenous lipids which are derived through the metabolism of arachidonic acid by cytochrome P450 epoxygenase enzymes. Also, EETs hyperpolarize vascular smooth muscle and induce dilation of coronary arteries and arterioles, and therefore may be endogenous mediators of coronary vasomotor tone and myocardial perfusion. In addition, EETs have been shown to inhibit vascular smooth muscle migration, decrease inflammation, inhibit platelet aggregation and decrease adhesion molecule expression, therefore representing an endogenous protective mechanism against atherosclerosis. Endogenous EETs are degraded to less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase. Pharmacological inhibition of soluble epoxide hydrolase has received considerable attention as a potential approach to enhance EET‐mediated vascular protection, and several compounds have appeared promising in recent animal studies. The present review discusses the emerging role of EETs in coronary vascular function, as well as recent advancements in the development of pharmacological agents to enhance EET bioavailability.
Annals of the New York Academy of Sciences | 2006
Ossama A. Hatoum; Jan Heidemann; David G. Binion
Abstract: Chronic inflammation is a complex biologic process which involves immune as well as non‐immune cells including the microvasculature and its endothelial lining. Growing evidence suggests that the microvasculature plays an integral role in the pathophysiology of inflammatory bowel disease (IBD; Crohns disease and ulcerative colitis). The microvasculature contributes to chronic inflammation through altered leukocyte recruitment, impaired perfusion, and angiogenesis leading to tissue remodeling. These diverse areas of IBD microvascular biology represent therapeutic targets that are currently undergoing investigation.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Ossama A. Hatoum; Mary F. Otterson; Hiroto Miura; Igor Sukhotnik; Brandon T. Larsen; Rebecca M. Selle; John E. Moulder; David D. Gutterman
Objective—Endothelial dysfunction and vascular dysregulation contribute to the pathological effects of radiation on tissues. The objectives of this study were to assess the acute effect of irradiation on acetylcholine (Ach)-induced dilation of gut submucosal microvessels. Methods and Results—Rats were exposed in vivo to 1 to 9 cGy in 3 fractions per week on alternate days for 3 successive weeks for a total dose of up to 2250 cGy. Submucosal microvessels were isolated after varying levels of irradiation. Diameters of isolated vessels were measured using videomicroscopy, and the dose-response relationship to Ach was determined. Dihydroethidine and 2′, 7′-dichlorodihydrofluorescein diacetate fluorescent probes were used to assess reactive oxygen species (ROS) production. After constriction (30% to 50%) with endothelin, dilation to graded doses of Ach (10−9−10−4 M) was observed in control vessels (maximal dilation [MD] 87±3%; n=7). However, Ach-induced dilation was reduced in vessels from irradiated rats (MD=3±9%; n=7; P=<0.05 versus controls). Significant increases in superoxide and peroxides were observed in irradiated microvessels. Irradiated microvessels pretreated with superoxide dismutase–mimetic demonstrated significant improvement in Ach-induced vasodilation compared with irradiation alone, suggesting that superoxide contributes to impaired dilation to Ach after irradiation. Conclusions—Radiation induces acute microvascular dysfunction in the resistance arterioles of the intestine. Enhanced ROS contribute to this dysfunction and therefore may represent a novel therapeutic target to minimize radiation toxicity in the gut.
European Journal of Clinical Investigation | 2005
Ossama A. Hatoum; David G. Binion; David D. Gutterman
This review has focused on evidence regarding intestinal perfusion of inflammatory bowel disease (IBD). Basic investigation has defined an altered microvascular anatomy in the affected IBD bowel, which corresponds with diminished mucosal perfusion in the setting of chronic, long‐standing inflammation. Diminished perfusion is linked to impaired wound healing, and may contribute to the continued refractory mucosal damage, which characterizes IBD. Alterations in vascular anatomy and physiology in IBD suggests additional possible mechanisms by which micro‐vessels may contribute to the initiation and perpetuation of IBD. This begs the following questions: will angiogenesis within the gut lead to sustained inflammation, does the growing vasculature generate factors that transform the surrounding tissue and does angiogenesis generate vascular anastomosis within the gut, with shunting of blood away from the mucosal surface, impairment of metabolism and potentiation of gut damage? Further studies are required to define the mechanisms that underlie the vascular dysfunction and its role in pathophysiology of IBD.