Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Otoki Nakahashi is active.

Publication


Featured researches published by Otoki Nakahashi.


Nutrition Research | 2013

Dietary phosphate restriction induces hepatic lipid accumulation through dysregulation of cholesterol metabolism in mice

Sarasa Tanaka; Hironori Yamamoto; Otoki Nakahashi; Tomohiro Kagawa; Mariko Ishiguro; Masashi Masuda; Mina Kozai; Shoko Ikeda; Yutaka Taketani; Eiji Takeda

Excessive inorganic phosphate (Pi) intake and hyperphosphatemia have both been speculated to be risk factors for cardiovascular disease and hypercholesterolemia, and dysregulation of cholesterol metabolism can lead to atherosclerosis. However, the relationship between Pi and cholesterol metabolism has not been investigated in detail. Our recent study showed that triiodothyronine can induce both hyperphosphatemia and hypocholesterolemia in mice. We therefore hypothesized a possible linkage between Pi and cholesterol metabolism. In this study, we investigated the effects of dietary Pi intake on cholesterol metabolism in mice. Mice were divided into 4 groups, which were fed diets containing 1.2% or 0.1% Pi and with or without 2% cholesterol (Pi-sufficient, Pi-restricted, Pi-sufficient + Chol, and Pi-restricted + Chol), for 12 days. Inorganic phosphate-restricted mice exhibited significantly higher liver weights than did Pi-sufficient mice. Interestingly, dietary Pi restriction significantly increased high-cholesterol diet-induced hepatic lipid accumulation. Real-time polymerase chain reaction analysis revealed that dietary Pi restriction decreased expression of hepatic genes involved in cholesterol metabolism and fatty acid biosynthesis. In addition, hepatic messenger RNA levels of several transcription factors including peroxisome proliferator-activated receptors and liver X receptor were markedly decreased by Pi restriction. Furthermore, plasma lipid and lipoprotein profile analysis showed that dietary Pi restriction reduced susceptibility to high-cholesterol diet-induced hyperlipidemia. Importantly, we found that there was a significant negative correlation between plasma levels of Pi and total cholesterol. These results suggest that dietary Pi plays an important role in the development of fatty liver disease and hyperlipidemia induced by a high-cholesterol diet through regulation of lipid metabolism-related gene expression in the liver.


Endocrinology | 2013

Thyroid hormones decrease plasma 1α,25-dihydroxyvitamin D levels through transcriptional repression of the renal 25-hydroxyvitamin D3 1α-hydroxylase gene (CYP27B1).

Mina Kozai; Hironori Yamamoto; Mariko Ishiguro; Nagakatsu Harada; Masashi Masuda; Tomohiro Kagawa; Yuichiro Takei; Ayako Otani; Otoki Nakahashi; Shoko Ikeda; Yutaka Taketani; Ken-ichi Takeyama; Shigeaki Kato; Eiji Takeda

The primary determinant of circulating 1α,25-dihydroxyvitamin D (1,25[OH](2)D) levels is the activity of 25-hydroxyvitamin D-1α-hydroxylase (cytochrome P450 27B1 [CYP27B1]) in the kidney. Hyperthyroid patients have been reported to have low levels of plasma 1,25(OH)(2)D. However, the detailed mechanism of thyroid hormone action on vitamin D metabolism is still poorly understood. The present study determined whether renal CYP27B1 gene expression was negatively regulated by thyroid hormones. T(3)-induced hyperthyroid mice showed marked decreases in plasma 1,25(OH)(2)D levels and in renal expression of CYP27B1 mRNA but no changes in plasma concentrations of calcium, PTH, or fibroblast growth factor-23. In addition, we observed that T(3) administration significantly decreased plasma 1,25(OH)(2)D and renal CYP27B1 mRNA levels that were increased by low-calcium or low-phosphorus diets and induced hypocalcemia in mice fed a low-calcium diet. Promoter analysis revealed that T(3) decreases the basal transcriptional activity of the CYP27B1 gene through thyroid hormone receptors (TRα and TRβ1) and the retinoid X receptor α (RXRα) in renal proximal tubular cells. Interestingly, we identified an everted repeat negative thyroid hormone response element (1α-nTRE) overlapping the sterol regulatory element (1α-SRE) and the TATA-box -50 to -20 base pairs from the human CYP27B1 gene transcription start site. Finally, we established that CYP27B1 gene transcription is positively regulated by SRE-binding proteins and that a T(3)-bound TRβ1/RXRα heterodimer inhibits SRE-binding protein-1c-induced transcriptional activity through the 1α-nTRE. These results suggest that transcriptional repression of the CYP27B1 gene by T(3)-bound TRs/RXRα, acting through the 1α-nTRE, results in decreased renal CYP27B1 expression and plasma 1,25(OH)(2)D levels.


Journal of Clinical Biochemistry and Nutrition | 2014

Short-term dietary phosphate restriction up-regulates ileal fibroblast growth factor 15 gene expression in mice

Otoki Nakahashi; Hironori Yamamoto; Sarasa Tanaka; Mina Kozai; Yuichiro Takei; Masashi Masuda; Ichiro Kaneko; Yutaka Taketani; Masayuki Iwano; Ken-ichi Miyamoto; Eiji Takeda

Members of the fibroblast growth factor (FGF) 19 subfamily, including FGF23, FGF15/19, and FGF21, have a role as endocrine factors which influence the metabolism of inorganic phosphate (Pi) and vitamin D, bile acid, and energy. It has been reported that dietary Pi regulates circulating FGF23. In this study, the short-term effects of dietary Pi restriction on the expression of FGF19 subfamily members in mice were analyzed. An initial analysis confirmed plasma FGF23 levels positively correlated with the amount of dietary Pi. On the other hand, ileal Fgf15 gene expression, but not hepatic Fgf21 gene expression, was up-regulated by dietary Pi restriction. In addition, we observed the increase of plasma 1,25-dihydroxyvitamin D [1,25(OH)2D] levels by dietary Pi restriction, and the up-regulation of ileal Fgf15 mRNA expression by 1,25(OH)2D3 and vitamin D receptor (VDR). Importantly, dietary Pi restriction-induced Fgf15 gene expression was prevented in VDR-knockout mice. Furthermore, diurnal variations of plasma triglyceride concentrations and hepatic mRNA expression of the bile acid synthesis enzyme Cyp7a1 as one of Fgf15 negative target genes was influenced by dietary Pi restriction. These results suggest that dietary Pi restriction up-regulates ileal Fgf15 gene expression through 1,25(OH)2D3 and VDR, and may affect hepatic bile acid homeostasis.


American Journal of Physiology-renal Physiology | 2014

Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation

Shoko Ikeda; Hironori Yamamoto; Masashi Masuda; Yuichiro Takei; Otoki Nakahashi; Mina Kozai; Sarasa Tanaka; Mari Nakao; Yutaka Taketani; Hiroko Segawa; Masayuki Iwano; Ken-ichi Miyamoto; Eiji Takeda

The type IIa sodium-dependent phosphate cotransporter (Npt2a) plays a critical role in reabsorption of inorganic phosphate (Pi) by renal proximal tubular cells. Pi abnormalities during early stages of sepsis have been reported, but the mechanisms regulating Pi homeostasis during acute inflammation are poorly understood. We examined the regulation of Pi metabolism and renal Npt2a expression during lipopolysaccharide (LPS)-induced inflammation in mice. Dose-response and time-course studies with LPS showed significant increases of plasma Pi and intact parathyroid hormone (iPTH) levels and renal Pi excretion, while renal calcium excretion was significantly decreased. There was no difference in plasma 1,25-dihydroxyvitamin D levels, but the induction of plasma intact fibroblast growth factor 23 levels peaked 3 h after LPS treatment. Western blotting, immunostaining, and quantitative real-time PCR showed that LPS administration significantly decreased Npt2a protein expression in the brush border membrane (BBM) 3 h after injection, but there was no change in renal Npt2a mRNA levels. Moreover, tumor necrosis factor-α injection also increased plasma iPTH and decreased renal BBM Npt2a expression. Importantly, we revealed that parathyroidectomized rats had impaired renal Pi excretion and BBM Npt2a expression in response to LPS. These results suggest that the downregulation of Npt2a expression in renal BBM through induction of plasma iPTH levels alter Pi homeostasis during LPS-induced acute inflammation.


Journal of Clinical Biochemistry and Nutrition | 2012

Up-regulation of stanniocalcin 1 expression by 1,25-dihydroxy vitamin D3 and parathyroid hormone in renal proximal tubular cells

Nguyen Trong Hung; Hironori Yamamoto; Yuichiro Takei; Masashi Masuda; Ayako Otani; Mina Kozai; Shoko Ikeda; Otoki Nakahashi; Sarasa Tanaka; Yutaka Taketani; Eiji Takeda

Stanniocalcin 1 and stanniocalcin 2 are two glycoprotein hormones, which act as calcium phosphate-regulating factor on intestine and kidney. We have previously reported that stanniocalcin 2 expression is positively and negatively controlled by 1,25(OH)2D3 and parathyroid hormone in renal proximal tubular cells. However, it has been unclear whether they regulate the stanniocalcin 1 gene expression. In this study, we identified the opossum stanniocalcin 1 cDNA sequence. The opossum stanniocalcin 1 amino acid sequence had 83% homology with human stanniocalcin 1, and has a conserved putative N-linked glycosylation site. Real-time PCR analysis using opossum kidney proximal tubular (OK-P) cells revealed that the mRNA levels of stanniocalcin 1 gene is up-regulated by both 1,25(OH)2D3 and parathyroid hormone in dose-dependent and time-dependent manners. We also demonstrated that the stanniocalcin 1 expression was increased in parathyroid hormone injected rat kidney. Furthermore, the mRNA expression of stanniocalcin 1 and stanniocalcin 2 were oppositely regulated by phorbol 12,13-myristic acetate, a specific PKC activator. Interestingly, the up-regulation of stanniocalcin 1 gene by 1,25(OH)2D3 and phorbol 12,13-myristic acetate were not prevented in the presence of actinomycin D, an RNA synthesis inhibitor. These results suggest that the stanniocalcin 1 gene expression is up-regulated by 1,25(OH)2D3 and parathyroid hormone through mRNA stabilization in renal proximal tubular cells.


Journal of Clinical Biochemistry and Nutrition | 2018

The age-related changes of dietary phosphate responsiveness in plasma 1,25-dihydroxyvitamin D levels and renal Cyp27b1 and Cyp24a1 gene expression is associated with renal α-Klotho gene expression in mice

Ryouhei Yoshikawa; Hironori Yamamoto; Otoki Nakahashi; Tomohiro Kagawa; Mari Tajiri; Mari Nakao; Shiori Fukuda; Hidekazu Arai; Masashi Masuda; Masayuki Iwano; Eiji Takeda; Yutaka Taketani

In this study, we investigated the relationship between age-related changes in renal α-Klotho gene expression, vitamin D metabolism and the responsiveness of dietary phosphate in 1, 2 and 13 month-old mice fed a high phosphate (phosphate 1.2%) diet or low phosphate (phosphate 0.02%) diet for 5 days. We found that 1,25-dihydroxyvitamin D levels in plasma were significantly lower in the high phosphate group than the low phosphate group for 1 and 2 month-old mice, but not 13 month-old mice. In addition, in the high phosphate group plasma 1,25-dihydroxyvitamin D levels were decreased in 2 month-old mice relative to 1 month-old mice, but 13 month-old mice had higher levels than 2 month-old mice. In fact, plasma 1,25-dihydroxyvitamin D levels showed a significant correlation with vitamin D metabolism gene Cyp27b1 and Cyp24a1 mRNA expression in the high phosphate group. Interestingly, renal α-Klotho mRNA and protein levels were significant change with age. Furthermore, α-Klotho mRNA expression showed a significant negative correlation with plasma 1,25-dihydroxyvitamin D levels in the high phosphate group. Our results suggest that age-related alterations in renal α-Klotho expression could affect the responsiveness of dietary phosphate to vitamin D metabolism.


Nutrition Research | 2015

Dietary phosphate supplementation delays the onset of iron deficiency anemia and affects iron status in rats

Mari Nakao; Hironori Yamamoto; Otoki Nakahashi; Shoko Ikeda; Kotaro Abe; Masashi Masuda; Mariko Ishiguro; Masayuki Iwano; Eiji Takeda; Yutaka Taketani

Inorganic phosphate (Pi) plays critical roles in bone metabolism and is an essential component of 2,3-diphosphoglycerate (2,3-DPG). It has been reported that animals fed a low-iron diet modulate Pi metabolism, whereas the effect of dietary Pi on iron metabolism, particularly in iron deficiency anemia (IDA), is not fully understood. In this study, we hypothesized the presence of a link between Pi and iron metabolism and tested the hypothesis by investigating the effects of dietary Pi on iron status and IDA. Wistar rats aged 4 weeks were randomly assigned to 1 of 4 experimental dietary groups: normal iron content (Con Fe)+0.5% Pi, low-iron (Low Fe)+0.5% Pi, Con Fe+1.5% Pi, and Low Fe+1.5% Pi. Rats fed the 1.5% Pi diet for 14 days, but not for 28 days, maintained their anemia state and plasma erythropoietin concentrations within the reference range, even under conditions of low iron. In addition, plasma concentrations of 2,3-DPG were significantly increased by the 1.5% Pi diets and were positively correlated with plasma Pi concentration (r=0.779; P<.001). Dietary Pi regulated the messenger RNA expression of iron-regulated genes, including divalent metal transporter 1, duodenal cytochrome B, and hepcidin. Furthermore, iron concentration in liver tissues was increased by the 1.5% Pi in Con Fe diet. These results suggest that dietary Pi supplementation delays the onset of IDA and increases plasma 2,3-DPG concentration, followed by modulation of the expression of iron-regulated genes.


Biochemical Journal | 2010

Regulation of renal sodium-dependent phosphate co-transporter genes (Npt2a and Npt2c) by all-trans-retinoic acid and its receptors

Masashi Masuda; Hironori Yamamoto; Mina Kozai; Sarasa Tanaka; Mariko Ishiguro; Yuichiro Takei; Otoki Nakahashi; Shoko Ikeda; Takashi Uebanso; Yutaka Taketani; Hiroko Segawa; Ken-ichi Miyamoto; Eiji Takeda


Vitamins | 2013

Polymorphisms of vitamin D binding protein gene and diseases

Yutaka Taketani; Hirokazu Ohminami; Otoki Nakahashi; Shoko Ikeda


The Journal of Medical Investigation | 2013

Hypercholesterolemia and effects of high cholesterol diet in type IIa sodium-dependent phosphate co-transporter (Npt2a) deficient mice

Sarasa Tanaka; Hironori Yamamoto; Otoki Nakahashi; Mariko Ishiguro; Yuichiro Takei; Masashi Masuda; Mina Kozai; Shoko Ikeda; Yutaka Taketani; Ken-ichi Miyamoto; Eiji Takeda

Collaboration


Dive into the Otoki Nakahashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eiji Takeda

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shoko Ikeda

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Mina Kozai

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge