Ottavia Barbieri
University of Genoa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ottavia Barbieri.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Ileana Zucchi; S. Sanzone; S. Astigiano; P. Pelucchi; M. Scotti; V. Valsecchi; Ottavia Barbieri; G. Bertoli; A. Albertini; Rolland Reinbold; Renato Dulbecco
The cancer stem cell hypothesis posits that tumors are derived from a single cancer-initiating cell with stem cell properties. The task of identifying and characterizing a single cancer-initiating cell with stem cell properties has proven technically difficult because of the scarcity of the cancer stem cells in the tissue of origin and the lack of specific markers for cancer stem cells. Here we show that a single LA7 cell derived from rat mammary adenocarcinoma has the following properties: the differentiation potential to generate all of the cell lineages of the mammary gland; the ability to generate branched duct-like structures that recapitulate morphologically and functionally the ductal–alveolar-like architecture of the mammary tree; and the capacity to initiate heterogeneous tumors in nonobese diabetic-SCID mice. In addition, we show that cultured cells derived from tumors generated by a single LA7 cell-injection have properties similar to LA7 cells, can generate all of the cell lineages of the mammary gland, and recapitulate the ductal–alveolar-like architecture of the mammary tree. The properties of self-renewal, extensive capacity for proliferation, multilineage differentiation potential, and single-cell tumor-initiation potential suggest that LA7 cells are cancer stem cells and can be used as a model system to study the dynamics of tumor formation at the single-cell level.
Carcinogenesis | 2012
Peter H. Killian; Katharina M. Michalik; Ottavia Barbieri; Simonetta Astigiano; Christian P. Sommerhoff; Ulrich Pfeffer; Andreas G. Nerlich; Beatrice E. Bachmeier
In America and Western Europe, prostate cancer is the second leading cause of death in men. Emerging evidence suggests that chronic inflammation is a major risk factor for the development and metastatic progression of prostate cancer. We previously reported that the chemopreventive polyphenol curcumin inhibits the expression of the proinflammatory cytokines CXCL1 and -2 leading to diminished formation of breast cancer metastases. In this study, we analyze the effects of curcumin on prostate carcinoma growth, apoptosis and metastasis. We show that curcumin inhibits translocation of NFκB to the nucleus through the inhibition of the IκB-kinase (IKKβ, leading to stabilization of the inhibitor of NFκB, IκBα, in PC-3 prostate carcinoma cells. Inhibition of NFκB activity reduces expression of CXCL1 and -2 and abolishes the autocrine/paracrine loop that links the two chemokines to NFκB. The combination of curcumin with the synthetic IKKβ inhibitor, SC-541, shows no additive or synergistic effects indicating that the two compounds share the target. Treatment of the cells with curcumin and siRNA-based knockdown of CXCL1 and -2 induce apoptosis, inhibit proliferation and downregulate several important metastasis-promoting factors like COX2, SPARC and EFEMP. In an orthotopic mouse model of hematogenous metastasis, treatment with curcumin inhibits statistically significantly formation of lung metastases. In conclusion, chronic inflammation can induce a metastasis prone phenotype in prostate cancer cells by maintaining a positive proinflammatory and prometastatic feedback loop between NFκB and CXCL1/-2. Curcumin disrupts this feedback loop by the inhibition of NFκB signaling leading to reduced metastasis formation in vivo.
International Journal of Cancer | 2009
Rita Rotondo; Gaia Barisione; Luca Mastracci; Francesco Grossi; Anna Maria Orengo; Roberta Costa; Mauro Truini; Marina Fabbi; Silvano Ferrini; Ottavia Barbieri
Arginase 1 (ARG1) inhibits T‐cell proliferation by degrading extracellular arginine, which results in decreased responsiveness of T cells to CD3/TCR stimulation. In humans, ARG1 is stored in inactive form within granules of polymorphonuclear neutrophils (PMNs) and gets activated on release. We studied the role of PMNs‐related ARG1 activity in nonsmall cell lung cancer (NSLC), in which tumor‐infiltrating lymphocytes showed reduced proliferation in response to CD3/TCR triggering. Patients with NSCLC had increased ARG1 plasma levels as compared to healthy controls. Furthermore, immunohistochemistry showed that tumor‐infiltrating PMNs display reduced intracellular ARG1, in comparison to intravascular or peritumoral PMNs, suggesting a role of tumor microenvironment in ARG1 release. Indeed, supernatants of NSCLC cell lines induced exocytosis of ARG1 from PMNs. All (4/4) NSCLC cell lines and all (7/7) CD14− cell samples from NSCLC expressed interleukin (IL)‐8 mRNA, whereas TNFα mRNA was expressed by 1 cell line and by 2 tumor specimens. Furthermore, all NSCLC cell lines secreted immunoreactive IL‐8, albeit at different levels. IL‐8 was as effective as TNFα in triggering ARG1 release and the 2 cytokines acted synergistically. Secreted ARG1 was biologically active and catabolized extracellular arginine. The supernatant of IL‐8 gene‐silenced NSCLC cells did not mediate ARG1 release by PMNs. Altogether these findings demonstrate a role of IL‐8 in ARG1 exocytosis by PMNs and indicate that, due at least in part to IL‐8 secreted by NSCLC cells, PMNs infiltrating NSCLC release ARG1. This phenomenon could contribute to local immune suppression.
Molecular Oncology | 2014
Micol E. Fiori; Ottavia Barbieri; Simonetta Astigiano; Valentina Mirisola; Peter H. Killian; Antonino Bruno; Arianna Pagani; Francesca Rovera; Ulrich Pfeffer; Christian P. Sommerhoff; Douglas M. Noonan; Andreas G. Nerlich; Laura Fontana; Beatrice E. Bachmeier
Chronic inflammation is a major risk factor for the development and metastatic progression of cancer. We have previously reported that the chemopreventive polyphenol Curcumin inhibits the expression of the proinflammatory cytokines CXCL1 and ‐2 leading to diminished formation of breast and prostate cancer metastases. In the present study, we have analyzed the effects of Curcumin on miRNA expression and its correlation to the anti‐tumorigenic properties of this natural occurring polyphenol.
Molecular and Cellular Neuroscience | 2003
Giovanni Levi; Adam C. Puche; Stefano Mantero; Ottavia Barbieri; Sonya Trombino; Laura Paleari; Aliana Egeo; Giorgio R. Merlo
The distalless-related homeogene Dlx5 is expressed in the olfactory placodes and derived tissues and in the anterior-basal forebrain. We investigated the role of Dlx5 in olfactory development. In Dlx5(-/-) mice, the olfactory bulbs (OBs) lack glomeruli, exhibit disorganized cellular layers, and show reduced numbers of TH- and GAD67-positive neurons. The olfactory epithelium in Dlx5(-/-) mice is composed of olfactory receptor neurons (ORNs) that appear identical to wild-type ORNs, but their axons fail to contact the OBs. We transplanted Dlx5(-/-) OBs into a wild-type newborn mouse; wild-type ORN axons enter the mutant OB and form glomeruli, but cannot rescue the lamination defect or the expression of TH and GAD67. Thus, the absence of Dlx5 in the OB does not per se prevent ORN axon ingrowth. In conclusion, Dlx5 plays major roles in the connectivity of ORN axons and in the differentiation of OB interneurons.
Mechanisms of Development | 2006
Giovanni Levi; Stefano Mantero; Ottavia Barbieri; Daniela Cantatore; Laura Paleari; Annemiek Beverdam; Francesca Genova; Benoît Robert; Giorgio R. Merlo
Msx and Dlx homeoproteins control the morphogenesis and organization of craniofacial skeletal structures, specifically those derived from the pharyngeal arches. In vitro Msx and Dlx proteins have opposing transcriptional properties and form heterodimeric complexes via their homeodomain with reciprocal functional repression. In this report we examine the skeletal phenotype of Msx1; Dlx5 double knock-out (DKO) mice in relationship with their expression territories during craniofacial development. Co-expression of Dlx5 and Msx1 is only observed in embryonic tissues in which these genes have independent functions, and thus direct protein interactions are unlikely to control morphogenesis of the cranium. The DKO craniofacial phenotypes indicate a complex interplay between these genes, acting independently (mandible and middle ear), synergistically (deposition of bone tissue) or converging on the same morphogenetic process (palate growth and closure). In the latter case, the absence of Dlx5 rescues in part the Msx1-dependent defects in palate growth and elevation. At the basis of this effect, our data implicate the Bmp (Bmp7, Bmp4)/Bmp antagonist (Follistatin) signal: in the Dlx5(-/-) palate changes in the expression level of Bmp7 and Follistatin counteract the reduced Bmp4 expression. These results highlight the importance of precise spatial and temporal regulation of the Bmp/Bmp antagonist system during palate closure.
Journal of Leukocyte Biology | 2011
Rita Rotondo; Maria Bertolotto; Gaia Barisione; Simonetta Astigiano; Susanna Mandruzzato; Luciano Ottonello; Franco Dallegri; Vincenzo Bronte; Silvano Ferrini; Ottavia Barbieri
ARG1, expressed by human PMNs, inhibits T cell proliferation by depleting extracellular l‐arginine. Here, we report that ARG1, released from gelatinase granules by PMNs, is inactive at physiological pH unless activated by factor(s) stored in azurophil granules. Whereas ARG1 exocytosis was induced by TNF‐α or ionomycin, only the latter mediated the release of both granules, resulting in extracellular ARG enzyme activity at physiological pH. Furthermore, after fractionation of the different classes of granules, only the mixture of gelatinase and azurophil granules resulted in ARG1 activity at physiological pH. The use of protease inhibitors indicated the involvement of a PMSF‐ and leupeptin‐susceptible serine protease in ARG1 processing and activation. Finally, the supernatant of viable PMNs undergoing frustrated phagocytosis, which mediates gelatinase and azurophil granule release, inhibited T cell proliferation through ARG‐dependent mechanisms. In vivo, high ARG1 concentrations and increased ARG enzyme activity, sufficient to inhibit T cell proliferation, were observed in synovial fluids from RA. These findings suggest that PMNs, recruited at sites of immune complex deposition, induce ARG1‐dependent immune suppression through concomitant exocytosis of gelatinase and azurophil granules.
Vaccine | 2010
Matteo Martini; Maria Grazia Testi; Matteo Pasetto; Maria Cristina Picchio; Giulio Innamorati; Marta Mazzocco; Stefano Ugel; Sara Cingarlini; Vincenzo Bronte; Paola Zanovello; Mauro Krampera; Federico Mosna; Tiziana Cestari; Anna Pia Riviera; Nadia Brutti; Ottavia Barbieri; Lina Matera; Giuseppe Tridente; Marco Colombatti; Silvia Sartoris
De novo expression of B7-1 impaired tumorigenicity of TRAMP-C2 mouse prostate adenocarcinoma (TRAMP-C2/B7), but it did not elicit a protective response against TRAMP-C2 parental tumor, unless after in vitro treatment with IFN-gamma. TRAMP-C2 cells secrete TGF-beta and show low MHC-I expression. Treatment with IFN-gamma increased MHC-I expression by induction of some APM components and antagonizing the immunosuppressant activity of TGF-beta. Thus, immunization with TRAMP-C2/B7 conferred protection against TRAMP-C2-derived tumors in function of the IFN-gamma-mediated fine-tuned modulation of either APM expression or TGF-beta signaling. To explore possible clinical translation, we delivered IFN-gamma to TRAMP-C2 tumor site by means of genetically engineered MSCs secreting IFN-gamma.
PLOS ONE | 2007
Maxence Vieux-Rochas; Laurent Coen; Takahiro Sato; Yukiko Kurihara; Yorick Gitton; Ottavia Barbieri; Karine Le Blay; Giorgio R. Merlo; Marc Ekker; Hiroki Kurihara; Philippe Janvier; Giovanni Levi
Background Intake of retinoic acid (RA) or of its precursor, vitamin A, during early pregnancy is associated with increased incidence of craniofacial lesions. The origin of these teratogenic effects remains enigmatic as in cranial neural crest cells (CNCCs), which largely contribute to craniofacial structures, the RA-transduction pathway is not active. Recent results suggest that RA could act on the endoderm of the first pharyngeal arch (1stPA), through a RARß-dependent mechanism. Methodology/Principal Findings Here we show that RA provokes dramatically different craniofacial malformations when administered at slightly different developmental times within a narrow temporal interval corresponding to the colonization of the 1st PA by CNCCs. We provide evidence showing that RA acts on the signalling epithelium of the 1st PA, gradually reducing the expression of endothelin-1 and Fgf8. These two molecular signals are instrumental in activating Dlx genes in incoming CNCCs, thereby triggering the morphogenetic programs, which specify different jaw elements. Conclusions/Significance The anatomical series induced by RA-treatments at different developmental times parallels, at least in some instances, the supposed origin of modern jaws (e.g., the fate of the incus). Our results might provide a conceptual framework for the rise of jaw morphotypes characteristic of gnathostomes.
European Journal of Human Genetics | 2008
Kentaro Suzuki; Ryuma Haraguchi; Tsutomu Ogata; Ottavia Barbieri; Olinda Alegria; Maxence Vieux-Rochas; Naomi Nakagata; Masataka Ito; Alea A. Mills; Takeshi Kurita; Giovanni Levi; Gen Yamada
Urogenital birth defects are one of the common phenotypes observed in hereditary human disorders. In particular, limb malformations are often associated with urogenital developmental abnormalities, as the case for Hand–foot–genital syndrome displaying similar hypoplasia/agenesis of limbs and external genitalia. Split-hand/split-foot malformation (SHFM) is a syndromic limb disorder affecting the central rays of the autopod with median clefts of the hands and feet, missing central fingers and often fusion of the remaining ones. SHFM type 1 (SHFM1) is linked to genomic deletions or rearrangements, which includes the distal-less-related homeogenes DLX5 and DLX6 as well as DSS1. SHFM type 4 (SHFM4) is associated with mutations in p63, which encodes a p53-related transcription factor. To understand that SHFM is associated with urogenital birth defects, we performed gene expression analysis and gene knockout mouse model analyses. We show here that Dlx5, Dlx6, p63 and Bmp7, one of the p63 downstream candidate genes, are all expressed in the developing urethral plate (UP) and that targeted inactivation of these genes in the mouse results in UP defects leading to abnormal urethra formation. These results suggested that different set of transcription factors and growth factor genes play similar developmental functions during embryonic urethra formation. Human SHFM syndromes display multiple phenotypes with variations in addition to split hand foot limb phenotype. These results suggest that different genes associated with human SHFM could also be involved in the aetiogenesis of hypospadias pointing toward a common molecular origin of these congenital malformations.