Otto Lappi
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Otto Lappi.
Journal of Vision | 2014
Otto Lappi
Studying human behavior in the natural context of everyday visual tasks--including locomotor tasks such as driving--can reveal visual strategies or even suggest underlying visual mechanisms. This paper reviews empirical and theoretical work in the past 20 years (1994-2014) on the visual control of steering a vehicle along a winding path-one of the most comprehensively studied forms of visually guided locomotion in humans. The focus is on on-road studies of visual behavior and what they can reveal about the visual strategies in curve driving. Theoretical models and results from simulator studies are discussed where they have direct relevance to the interpretation of on-road data. For the past 20 years, the point of departure in studies of curve driving has been tangent point orientation, and tangent point models (models based on tracking the tangent point) have become established as the default account of how vision is used in curve negotiation. More recent studies have questioned the generality of the tangent point hypothesis, however, arguing that in addition to (or instead of) the tangent point, drivers target visual reference points on their future path. Ecological validity of real-world studies often comes at the cost of methodological challenges that make the data difficult to interpret in terms of underlying mechanisms, and the limitations of existing data and the complementary roles of real-world and laboratory studies are discussed.
Brain Research | 2009
Alina Leinonen; Petra Grönholm-Nyman; Miika Järvenpää; Carina Söderholm; Otto Lappi; Matti Laine; Christina M. Krause
The aim of the study was to investigate how the input modality affects the processing of a morphologically complex word. The processing of Finnish inflected vs. monomorphemic words and pseudowords was examined during a lexical decision task, using behavioral responses and event-related potentials. The stimuli were presented in two modalities, visually and auditorily, to two groups of participants. Half of the words and pseudowords carried a case-inflection. At the behavioral level, the inflected words elicited a processing cost with longer decision latencies and higher error rates. At the neural level, pseudowords elicited an N400 effect, which was more pronounced in the visual modality. Inflected words elicited an N400 effect in both modalities, which, however, differed in topography and latency. The N400 effect for inflected words most probably reflects access and possible integration of the stem and suffix. The results suggest that the inflectional processing cost stems from the later, lexical-semantic stage of processing in both modalities. The ERP responses to inflected pseudowords did not differ from the ERP responses to monomorphemic pseudowords in either modality, suggesting that combinatorial case-inflection processing requires a real word stem in order to proceed.
PLOS ONE | 2013
Otto Lappi; Jami Pekkanen; Teemu H. Itkonen
For nearly 20 years, looking at the tangent point on the road edge has been prominent in models of visual orientation in curve driving. It is the most common interpretation of the commonly observed pattern of car drivers looking through a bend, or at the apex of the curve. Indeed, in the visual science literature, visual orientation towards the inside of a bend has become known as “tangent point orientation”. Yet, it remains to be empirically established whether it is the tangent point the drivers are looking at, or whether some other reference point on the road surface, or several reference points, are being targeted in addition to, or instead of, the tangent point. Recently discovered optokinetic pursuit eye-movements during curve driving can provide complementary evidence over and above traditional gaze-position measures. This paper presents the first detailed quantitative analysis of pursuit eye movements elicited by curvilinear optic flow in real driving. The data implicates the far zone beyond the tangent point as an important gaze target area during steady-state cornering. This is in line with the future path steering models, but difficult to reconcile with any pure tangent point steering model. We conclude that the tangent point steering models do not provide a general explanation of eye movement and steering during a curve driving sequence and cannot be considered uncritically as the default interpretation when the gaze position distribution is observed to be situated in the region of the curve apex.
Neuroscience & Biobehavioral Reviews | 2016
Otto Lappi
Understanding the brains capacity to encode complex visual information from a scene and to transform it into a coherent perception of 3D space and into well-coordinated motor commands are among the outstanding questions in the study of integrative brain function. Eye movement methodologies have allowed us to begin addressing these questions in increasingly naturalistic tasks, where eye and body movements are ubiquitous and, therefore, the applicability of most traditional neuroscience methods restricted. This review explores foundational issues in (1) how oculomotor and motor control in lab experiments extrapolates into more complex settings and (2) how real-world gaze behavior in turn decomposes into more elementary eye movement patterns. We review the received typology of oculomotor patterns in laboratory tasks, and how they map onto naturalistic gaze behavior (or not). We discuss the multiple coordinate systems needed to represent visual gaze strategies, how the choice of reference frame affects the description of eye movements, and the related but conceptually distinct issue of coordinate transformations between internal representations within the brain.
PLOS ONE | 2015
Teemu H. Itkonen; Jami Pekkanen; Otto Lappi
Several steering models in the visual science literature attempt to capture the visual strategies in curve driving. Some of them are based on steering points on the future path (FP), others on tangent points (TP). It is, however, challenging to differentiate between the models’ predictions in real–world contexts. Analysis of optokinetic nystagmus (OKN) parameters is one useful measure, as the different strategies predict measurably different OKN patterns. Here, we directly test this prediction by asking drivers to either a) “drive as they normally would” or b) to “look at the TP”. The design of the experiment is similar to a previous study by Kandil et al., but uses more sophisticated methods of eye–movement analysis. We find that the eye-movement patterns in the “normal” condition are indeed markedly different from the “tp” condition, and consistent with drivers looking at waypoints on the future path. This is the case for both overall fixation distribution, as well as the more informative fixation–by–fixation analysis of OKN. We find that the horizontal gaze speed during OKN corresponds well to the quantitative prediction of the future path models. The results also definitively rule out the alternative explanation that the OKN is produced by an involuntary reflex even while the driver is “trying” to look at the TP. The results are discussed in terms of the sequential organization of curve driving.
PLOS ONE | 2017
Jami Pekkanen; Otto Lappi; Teemu H. Itkonen; Heikki Summala
Car following (CF) models used in traffic engineering are often criticized for not incorporating “human factors” well known to affect driving. Some recent work has addressed this by augmenting the CF models with the Task-Capability Interface (TCI) model, by dynamically changing driving parameters as function of driver capability. We examined assumptions of these models experimentally using a self-paced visual occlusion paradigm in a simulated car following task. The results show strong, approximately one-to-one, correspondence between occlusion duration and increase in time headway. The correspondence was found between subjects and within subjects, on aggregate and individual sample level. The long time scale aggregate results support TCI-CF models that assume a linear increase in time headway in response to increased distraction. The short time scale individual sample level results suggest that drivers also adapt their visual sampling in response to transient changes in time headway, a mechanism which isn’t incorporated in the current models.
Frontiers in Human Neuroscience | 2015
Otto Lappi
A fundamental question in human brain plasticity is how sensory, motor, and cognitive functions adapt in the process of skill acquisition extended over a period of many years. Recently, there has emerged a growing interest in cognitive neuroscience on studying the functional and structural differences in the brains of elite athletes. Elite performance in sports, music, or the arts, allows us to observe sensorimotor and cognitive performance at the limits of human capability. In this mini-review, we look at driving expertise. The emerging brain imaging literature on the neural substrates of real and simulated driving is reviewed (for the first time), and used as the context for interpreting recent findings on the differences between racing drivers and non-athlete controls. Also the cognitive psychology and cognitive neuroscience of expertise are discussed.
Frontiers in Psychology | 2017
Otto Lappi; Paavo Rinkkala; Jami Pekkanen
In this paper we present and qualitatively analyze an expert drivers gaze behavior in natural driving on a real road, with no specific experimental task or instruction. Previous eye tracking research on naturalistic tasks has revealed recurring patterns of gaze behavior that are surprisingly regular and repeatable. Lappi (2016) identified in the literature seven “qualitative laws of gaze behavior in the wild”: recurring patterns that tend to go together, the more so the more naturalistic the setting, all of them expected in extended sequences of fully naturalistic behavior. However, no study to date has observed all in a single experiment. Here, we wanted to do just that: present observations supporting all the “laws” in a single behavioral sequence by a single subject. We discuss the laws in terms of unresolved issues in driver modeling and open challenges for experimental and theoretical development.
Synthese | 2016
Anna-Mari Rusanen; Otto Lappi
Computational explanations focus on information processing required in specific cognitive capacities, such as perception, reasoning or decision-making. These explanations specify the nature of the information processing task, what information needs to be represented, and why it should be operated on in a particular manner. In this article, the focus is on three questions concerning the nature of computational explanations: (1) What type of explanations they are, (2) in what sense computational explanations are explanatory and (3) to what extent they involve a special, “independent” or “autonomous” level of explanation. In this paper, we defend the view computational explanations are genuine explanations, which track non-causal/formal dependencies. Specifically, we argue that they do not provide mere sketches for explanation, in contrast to what for example Piccinini and Craver (Synthese 183(3):283–311, 2011) suggest. This view of computational explanations implies some degree of “autonomy” for the computational level. However, as we will demonstrate that does not make this view “computationally chauvinistic” in a way that Piccinini (Synthese 153:343–353, 2006b) or Kaplan (Synthese 183(3):339–373, 2011) have charged it to be.
Archive | 2012
Anna Mari Rusanen; Otto Lappi
An information-semantic account of models as scientific representations is presented, in which scientific models are considered information carrying artifacts, and the representational semantics of models is based on this information-theoretic relation between the model and the external world. In particular, the semantics of models as scientific representations is argued to be independent of the interpretation or the intentionality of the model builders. The information theoretic view can deal with the problems of asymmetry, circularity and relevance that plague other currently popular naturalistic proposals, and which have been used in the literature as arguments against naturalist accounts.