Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Otto Sanchez is active.

Publication


Featured researches published by Otto Sanchez.


Nature | 2006

Regulation of cancer cell migration and bone metastasis by RANKL

D. Holstead Jones; Tomoki Nakashima; Otto Sanchez; Ivona Kozieradzki; Svetlana V. Komarova; Ildiko Sarosi; Sean Morony; Evelyn Rubin; Carlo V. Hojilla; Vukoslav Komnenovic; Young-Yun Kong; Martin Schreiber; S. Jeffrey Dixon; Stephen M. Sims; Rama Khokha; Teiji Wada; Josef M. Penninger

Bone metastases are a frequent complication of many cancers that result in severe disease burden and pain. Since the late nineteenth century, it has been thought that the microenvironment of the local host tissue actively participates in the propensity of certain cancers to metastasize to specific organs, and that bone provides an especially fertile ‘soil’. In the case of breast cancers, the local chemokine milieu is now emerging as an explanation for why these tumours preferentially metastasize to certain organs. However, as the inhibition of chemokine receptors in vivo only partially blocks metastatic behaviour, other factors must exist that regulate the preferential metastasis of breast cancer cells. Here we show that the cytokine RANKL (receptor activator of NF-κB ligand) triggers migration of human epithelial cancer cells and melanoma cells that express the receptor RANK. RANK is expressed on cancer cell lines and breast cancer cells in patients. In a mouse model of melanoma metastasis, in vivo neutralization of RANKL by osteoprotegerin results in complete protection from paralysis and a marked reduction in tumour burden in bones but not in other organs. Our data show that local differentiation factors such as RANKL have an important role in cell migration and the tissue-specific metastatic behaviour of cancer cells.


Journal of Experimental Medicine | 2010

Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer.

Li Li; Marie Jo Halaby; Anne Hakem; Renato Cardoso; Samah El Ghamrasni; Shane M. Harding; Norman Chan; Robert G. Bristow; Otto Sanchez; Daniel Durocher; Razqallah Hakem

Signaling and repair of DNA double-strand breaks (DSBs) are critical for preventing immunodeficiency and cancer. These DNA breaks result from exogenous and endogenous DNA insults but are also programmed to occur during physiological processes such as meiosis and immunoglobulin heavy chain (IgH) class switch recombination (CSR). Recent studies reported that the E3 ligase RNF8 plays important roles in propagating DNA DSB signals and thereby facilitating the recruitment of various DNA damage response proteins, such as 53BP1 and BRCA1, to sites of damage. Using mouse models for Rnf8 mutation, we report that Rnf8 deficiency leads to impaired spermatogenesis and increased sensitivity to ionizing radiation both in vitro and in vivo. We also demonstrate the existence of alternative Rnf8-independent mechanisms that respond to irradiation and accounts for the partial recruitment of 53bp1 to sites of DNA damage in activated Rnf8−/− B cells. Remarkably, IgH CSR is impaired in a gene dose-dependent manner in Rnf8 mutant mice, revealing that these mice are immunodeficient. In addition, Rnf8−/− mice exhibit increased genomic instability and elevated risks for tumorigenesis indicating that Rnf8 is a novel tumor suppressor. These data unravel the in vivo pleiotropic effects of Rnf8.


PLOS Genetics | 2011

Genomic instability, defective spermatogenesis, immunodeficiency, and cancer in a mouse model of the RIDDLE syndrome.

Toshiyuki Bohgaki; Miyuki Bohgaki; Renato Cardoso; Stephanie Panier; Dimphy Zeegers; Li Li; Grant S. Stewart; Otto Sanchez; M. Prakash Hande; Daniel Durocher; Anne Hakem; Razqallah Hakem

Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals.


Cell Death & Differentiation | 2009

Essential role for Bclaf1 in lung development and immune system function

J. Peter McPherson; Haya Sarras; Bénédicte Lemmers; Laura Tamblyn; Eva Migon; Elzbieta Matysiak-Zablocki; Anne Hakem; S Alizadeh Azami; Renato Cardoso; J Fish; Otto Sanchez; M Post; Razqallah Hakem

Bcl-2 associated factor 1 (Bclaf1) is a nuclear protein that was originally identified in a screen of proteins that interact with the adenoviral bcl-2 homolog E1B19K. Overexpression of Bclaf1 was shown to result in apoptosis and transcriptional repression that was reversible in the presence of Bcl-2 or Bcl-xL. Furthermore, antiapoptotic members, but not proapoptotic members of the Bcl-2 protein family, were shown to interact with Bclaf1 and prevent its localization to the nucleus. Bclaf1 has also recently been identified as a binding partner for Emerin, a nuclear membrane protein that is mutated in X-linked recessive Emery–Dreifuss muscular dystrophy. To ascertain the in vivo function of Bclaf1, we have generated mice that carry a targeted mutation of the bclaf1 locus. In this study, we show that Bclaf1 is required for proper spatial and temporal organization of smooth muscle lineage during the saccular stage of lung development. We also show that Bclaf1 is dispensable for thymocyte development but is essential for peripheral T-cell homeostasis. Despite its postulated role as a proapoptotic protein, Bclaf1-deficient cells did not show any defect in cell death linked to development or after exposure to various apoptotic stimuli. Our findings show a critical role for Bclaf1 in developmental processes independent of apoptosis.


Cancer Research | 2007

Functional interplay of p53 and Mus81 in DNA damage responses and cancer

Ashwin Pamidi; Renato Cardoso; Anne Hakem; Elzbieta Matysiak-Zablocki; Anuradha Poonepalli; Laura Tamblyn; Bayardo Perez-Ordonez; M. Prakash Hande; Otto Sanchez; Razqallah Hakem

Mus81 plays an integral role in the maintenance of genome stability and DNA repair in mammalian cells. Deficiency of Mus81 in human and mouse cells results in hypersensitivity to interstrand cross-linking (ICL) agents and elevated levels of genomic instability. Furthermore, Mus81-mutant mice are susceptible to spontaneous lymphomas. The role of cellular checkpoints in mediating the phenotypes observed in Mus81-deficient cells and mice is currently unknown. In this study, we have observed increased activation of p53 in Mus81(-/-) cells in response to ICL-induced DNA damage. In addition, p53 inactivation completely rescued the ICL hypersensitivity of Mus81(-/-) cells, signifying p53 is essential for the elimination of ICL-damaged cells in the absence of Mus81. Confirming that p53 acts as a critical checkpoint for the Mus81 repair pathway, a synergistic increase of spontaneous and ICL-induced genomic instability was observed in Mus81(-/-)p53(-/-) cells. To clarify the genetic interactions of Mus81 and p53 in tumor suppression, we monitored Mus81(-/-)p53(-/-) and control mice for the development of spontaneous tumors. Significantly, we show that loss of even a single allele of Mus81 drastically modifies the tumor spectrum of p53-mutant mice and increases their predisposition to developing sarcomas. Our results reveal a key role for p53 in mediating the response to spontaneous and ICL-induced DNA damage that occurs in the absence of Mus81. Furthermore, our data show that loss of Mus81, in addition to p53, is a key step in sarcoma development.


Cell Death & Differentiation | 2013

The E3 ligase PIRH2 polyubiquitylates CHK2 and regulates its turnover

Miyuki Bohgaki; Anne Hakem; Marie-jo Halaby; Toshiyuki Bohgaki; Qin H. Li; P A Bissey; Jonathan Shloush; Thomas Kislinger; Otto Sanchez; Yi Sheng; Razqallah Hakem

The serine threonine kinase checkpoint kinase 2 (CHK2) is a DNA damage checkpoint protein important for the ATM-p53 signaling pathway. In addition to its phosphorylation, CHK2 is also ubiquitylated, and both post-translational modifications are important for its function. However, although the mechanisms that regulate CHK2 phosphorylation are well established, those that control its ubiquitylation are not fully understood. In this study, we demonstrate that the ubiquitin E3 ligase PIRH2 (p53-induced protein with a RING (Really Interesting New Gene)-H2 domain) interacts with CHK2 and mediates its polyubiquitylation and proteasomal degradation. We show that the deubiquitylating enzyme USP28 forms a complex with PIRH2 and CHK2 and antagonizes PIRH2-mediated polyubiquitylation and proteasomal degradation of CHK2. We also provide evidence that CHK2 ubiquitylation by PIRH2 is dependent on its phosphorylation status. Cells deficient in Pirh2 displayed accumulation of Chk2 and enhanced hyperactivation of G1/S and G2/M cell-cycle checkpoints. This hyperactivation was, however, no longer observed in Pirh2−/−Chk2−/− cells, providing evidence for the importance of Chk2 regulation by Pirh2. These findings indicate that PIRH2 has central roles in the ubiquitylation of Chk2 and its turnover and in the regulation of its function.


Cancer Letters | 2012

Reduced 4-Aminobiphenyl-Induced Liver Tumorigenicity but not DNA Damage in Arylamine N-Acetyltransferase Null Mice

Kim S. Sugamori; Debbie Brenneman; Otto Sanchez; Mark A. Doll; David W. Hein; William M. Pierce; Denis M. Grant

The aromatic amine 4-aminobiphenyl (ABP) is a liver procarcinogen in mice, requiring enzymatic bioactivation to exert its tumorigenic effect. To assess the role of arylamine N-acetyltransferase (NAT)-dependent acetylation capacity in the risk for ABP-induced liver tumors, we compared 1-year liver tumor incidence following the postnatal exposure of wild-type and NAT-deficient Nat1/2(-/-) mice to ABP. At an ABP exposure of 1200 nmol, male Nat1/2(-/-) mice had a liver tumor incidence of 36% compared to 69% in wild-type males, and at 600 nmol there was a complete absence of tumors compared to 60% in wild-type mice. Only one female wild-type mouse had a tumor using this exposure protocol. However, levels of N-deoxyguanosin-8-yl-ABP-DNA adducts did not correlate with either the strain or sex differences in tumor incidence. These results suggest that female sex and NAT deficiency reduce risk for ABP-induced liver tumors, but by mechanisms unrelated to differences in DNA-damaging events.


PLOS Genetics | 2013

Synergistic Interaction of Rnf8 and p53 in the Protection against Genomic Instability and Tumorigenesis

Marie-jo Halaby; Anne Hakem; Li Li; Samah El Ghamrasni; Shriram Venkatesan; Prakash Hande; Otto Sanchez; Razqallah Hakem

Rnf8 is an E3 ubiquitin ligase that plays a key role in the DNA damage response as well as in the maintenance of telomeres and chromatin remodeling. Rnf8−/− mice exhibit developmental defects and increased susceptibility to tumorigenesis. We observed that levels of p53, a central regulator of the cellular response to DNA damage, increased in Rnf8−/− mice in a tissue- and cell type–specific manner. To investigate the role of the p53-pathway inactivation on the phenotype observed in Rnf8−/− mice, we have generated Rnf8−/−p53−/− mice. Double-knockout mice showed similar growth retardation defects and impaired class switch recombination compared to Rnf8−/− mice. In contrast, loss of p53 fully rescued the increased apoptosis and reduced number of thymocytes and splenocytes in Rnf8−/− mice. Similarly, the senescence phenotype of Rnf8−/− mouse embryonic fibroblasts was rescued in p53 null background. Rnf8−/−p53−/− cells displayed defective cell cycle checkpoints and DNA double-strand break repair. In addition, Rnf8−/−p53−/− mice had increased levels of genomic instability and a remarkably elevated tumor incidence compared to either Rnf8−/− or p53−/− mice. Altogether, the data in this study highlight the importance of p53-pathway activation upon loss of Rnf8, suggesting that Rnf8 and p53 functionally interact to protect against genomic instability and tumorigenesis.


Oncogene | 2015

Cooperation of Blm and Mus81 in development, fertility, genomic integrity and cancer suppression

S El Ghamrasni; Renato Cardoso; Marie Jo Halaby; D Zeegers; Shane M. Harding; Ramya Kumareswaran; T Yavorska; N Chami; Andrea Jurisicova; Otto Sanchez; Manoor Prakash Hande; Robert G. Bristow; Razqallah Hakem; Anne Hakem

BLM is a DNA helicase important for the restart of stalled replication forks and for homologous recombination (HR) repair. Mutations of BLM lead to Bloom Syndrome, a rare autosomal recessive disorder characterized by elevated levels of sister chromatid exchanges (SCEs), dwarfism, immunodeficiency, infertility and increased cancer predisposition. BLM physically interacts with MUS81, an endonuclease involved in the restart of stalled replication forks and HR repair. Herein we report that loss of Mus81 in Blm hypomorph mutant mice leads to infertility, and growth and developmental defects that are not observed in single mutants. Double mutant cells and mice were hypersensitive to Mitomycin C and γ-irradiation (IR) compared with controls and their repair of DNA double-strand breaks (DSBs) mediated by HR pathway was significantly defective, whereas their non-homologous-end-joining repair was elevated compared with controls. We also demonstrate the importance of the loss of the nuclease activity of Mus81 in the defects observed in Mus81−/− and double mutant cells. Exacerbated IR-induced chromosomal aberration was observed in double mutant mice and despite their reduced SCE levels, these mutants showed increased tumorigenesis risks. Our data highlight the importance of Mus81 and Blm in DNA DSB repair pathways, fertility, development and cancer.


Blood | 2012

Caspase-8 is essential for maintaining chromosomal stability and suppressing B-cell lymphomagenesis

Anne Hakem; Samah El Ghamrasni; Georges Maire; Bénédicte Lemmers; Jana Karaskova; Andrea Jurisicova; Otto Sanchez; Jeremy A. Squire; Razqallah Hakem

In addition to its proapoptotic function, caspase-8 is also important for several other processes, including suppressing necroptosis, cell migration, and immune cell survival. In the present study, we report that the loss of caspase-8 in B lymphocytes leads to B-cell malignancies and that the risk for these tumors is further enhanced in the absence of p53. We also report that deficiency of caspase-8 results in impaired cytokinesis and that casp8(-/-) lymphomas display remarkably elevated levels of chromosomal aberrations. Our data support an important role for caspase-8 in the maintenance of genomic integrity and highlight its tumor-suppressive function.

Collaboration


Dive into the Otto Sanchez's collaboration.

Top Co-Authors

Avatar

Anne Hakem

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renato Cardoso

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Li Li

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Elzbieta Matysiak-Zablocki

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann LeSage

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge