Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ou Tan is active.

Publication


Featured researches published by Ou Tan.


Ophthalmology | 2009

Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography

Ou Tan; Vikas Chopra; Ake Tzu Hui Lu; Joel S. Schuman; Hiroshi Ishikawa; Gadi Wollstein; Rohit Varma; David Huang

PURPOSE To map ganglion cell complex (GCC) thickness with high-speed Fourier-domain optical coherence tomography (FD-OCT) and compute novel macular parameters for glaucoma diagnosis. DESIGN Observational, cross-sectional study. PARTICIPANTS One hundred seventy-eight participants in the Advanced Imaging for Glaucoma Study, divided into 3 groups: 65 persons in the normal group, 78 in the perimetric glaucoma group (PG), and 52 in the preperimetric glaucoma group (PPG). METHODS The RTVue FD-OCT system was used to map the macula over a 7 x 6 mm region. The macular OCT images were exported for automatic segmentation using software we developed. The program measured macular retinal (MR) thickness and GCC thickness. The GCC was defined as the combination of nerve fiber, ganglion cell, and inner plexiform layers. Pattern analysis was applied to the GCC map and the diagnostic powers of pattern-based diagnostic parameters were investigated. Results were compared with time-domain (TD) Stratus OCT measurements of MR and circumpapillary nerve fiber layer (NFL) thickness. MAIN OUTCOME MEASURES Repeatability was assessed by intraclass correlation, pooled standard deviation, and coefficient of variation. Diagnostic power was assessed by the area under the receiver operator characteristic (AROC) curve. Measurements in the PG group were the primary measures of performance. RESULTS The FD-OCT measurements of MR and GCC averages had significantly better repeatability than TD-OCT measurements of MR and NFL averages. The FD-OCT GCC average had significantly (P = 0.02) higher diagnostic power (AROC = 0.90) than MR (AROC = 0.85 for both FD-OCT and TD-OCT) in differentiating between PG and normal. One GCC pattern parameter, global loss volume, had significantly higher AROC (0.92) than the overall average (P = 0.01). The diagnostic powers of the best GCC parameters were statistically equal to TD-OCT NFL average. CONCLUSIONS The higher speed and resolution of FD-OCT improved the repeatability of macular imaging compared with standard TD-OCT. Ganglion cell mapping and pattern analysis improved diagnostic power. The improved diagnostic power of macular GCC imaging is on par with, and complementary to, peripapillary NFL imaging. Macular imaging with FD-OCT is a useful method for glaucoma diagnosis and has potential for tracking glaucoma progression.


Ophthalmology | 2014

Quantitative Optical Coherence Tomography Angiography of Choroidal Neovascularization in Age-Related Macular Degeneration

Yali Jia; Steven T. Bailey; David J. Wilson; Ou Tan; Michael L. Klein; Christina J. Flaxel; Benjamin Potsaid; Jonathan J. Liu; Chen D. Lu; Martin F. Kraus; James G. Fujimoto; David Huang

PURPOSE To detect and quantify choroidal neovascularization (CNV) in patients with age-related macular degeneration (AMD) using optical coherence tomography (OCT) angiography. DESIGN Observational, cross-sectional study. PARTICIPANTS A total of 5 normal subjects and 5 subjects with neovascular AMD were included. METHODS A total of 5 eyes with neovascular AMD and 5 normal age-matched controls were scanned by a high-speed (100 000 A-scans/seconds) 1050-nm wavelength swept-source OCT. The macular angiography scan covered a 3 × 3-mm area and comprised 200 × 200 × 8 A-scans acquired in 3.5 seconds. Flow was detected using the split-spectrum amplitude-decorrelation angiography (SSADA) algorithm. Motion artifacts were removed by 3-dimensional (3D) orthogonal registration and merging of 4 scans. The 3D angiography was segmented into 3 layers: inner retina (to show retinal vasculature), outer retina (to identify CNV), and choroid. En face maximum projection was used to obtain 2-dimensional angiograms from the 3 layers. The CNV area and flow index were computed from the en face OCT angiogram of the outer retinal layer. Flow (decorrelation) and structural data were combined in composite color angiograms for both en face and cross-sectional views. MAIN OUTCOME MEASURES The CNV angiogram, CNV area, and CNV flow index. RESULTS En face OCT angiograms of CNV showed sizes and locations that were confirmed by fluorescein angiography (FA). Optical coherence tomography angiography provided more distinct vascular network patterns that were less obscured by subretinal hemorrhage. The en face angiograms also showed areas of reduced choroidal flow adjacent to the CNV in all cases and significantly reduced retinal flow in 1 case. Cross-sectional angiograms were used to visualize CNV location relative to the retinal pigment epithelium and Bruchs layer and classify type I and type II CNV. A feeder vessel could be identified in 1 case. Higher flow indexes were associated with larger CNV and type II CNV. CONCLUSIONS Optical coherence tomography angiography provides depth-resolved information and detailed images of CNV in neovascular AMD. Quantitative information regarding CNV flow and area can be obtained. Further studies are needed to assess the role of quantitative OCT angiography in the evaluation and treatment of neovascular AMD.


Biomedical Optics Express | 2012

Quantitative OCT angiography of optic nerve head blood flow.

Yali Jia; John C. Morrison; Jason Tokayer; Ou Tan; Lorinna Lombardi; Bernhard Baumann; Chen D. Lu; WooJhon Choi; James G. Fujimoto; David Huang

Optic nerve head (ONH) blood flow may be associated with glaucoma development. A reliable method to quantify ONH blood flow could provide insight into the vascular component of glaucoma pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), we developed a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) for imaging ONH microcirculation. In this study, a method to quantify SSADA results was developed and used to detect ONH perfusion changes in early glaucoma. En face maximum projection was used to obtain 2D disc angiograms, from which the average decorrelation values (flow index) and the percentage area occupied by vessels (vessel density) were computed from the optic disc and a selected region within it. Preperimetric glaucoma patients had significant reductions of ONH perfusion compared to normals. This pilot study indicates OCT angiography can detect the abnormalities of ONH perfusion and has the potential to reveal the ONH blood flow mechanism related to glaucoma.


Journal of Biomedical Optics | 2007

In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography.

Yimin Wang; Bradley A. Bower; Joseph A. Izatt; Ou Tan; David Huang

There is considerable interest in new methods for the assessment of retinal blood flow for the diagnosis of eye diseases. We present in vivo normal human volumetric retinal flow measurement using Fourier domain Doppler optical coherence tomography. We used a dual-plane scanning pattern to determine the angle between the blood flow and the scanning beam in order to measure total flow velocity. Volumetric flow in each blood vessel around the optic nerve head was integrated in one cardiac cycle in each measurement. Measurements were performed in the right eye of one human subject. The measured venous flow velocity ranged from 16.26 mm/s to 29.7 mm/s. The arterial flow velocity ranged from 38.35 mm/s to 51.13 mm/s. The total retinal venous and arterial flow both added up to approximately 54 microl/min. We believe this is the first demonstration of total retinal blood flow measurement using the OCT technique.


Journal of Biomedical Optics | 2008

Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography

Yimin Wang; Bradley A. Bower; Joseph A. Izatt; Ou Tan; David Huang

We present in vivo human total retinal blood flow measurements using Doppler Fourier domain optical coherence tomography (OCT). The scan pattern consisted of two concentric circles around the optic nerve head, transecting all retinal branch arteries and veins. The relative positions of each blood vessel in the two OCT conic cross sections were measured and used to determine the angle between the OCT beam and the vessel. The measured angle and the Doppler shift profile were used to compute blood flow in the blood vessel. The flows in the branch veins was summed to give the total retinal blood flow at one time point. Each measurement of total retinal blood flow was completed within 2 s and averaged. The total retinal venous flow was measured in one eye each of two volunteers. The results were 52.90+/-2.75 and 45.23+/-3.18 microlmin, respectively. Volumetric flow rate positively correlated with vessel diameter. This new technique may be useful in the diagnosis and treatment of optic nerve and retinal diseases that are associated with poor blood flow, such as glaucoma and diabetic retinopathy.


Ophthalmology | 2012

Corneal epithelial thickness mapping by Fourier-domain optical coherence tomography in normal and keratoconic eyes.

Yan Li; Ou Tan; Robert Brass; Jack L. Weiss; David Huang

OBJECTIVE To map the corneal epithelial thickness with Fourier-domain optical coherence tomography (OCT) and to develop epithelial thickness-based variables for keratoconus detection. DESIGN Cross-sectional observational study. PARTICIPANTS One hundred forty-five eyes from 76 normal subjects and 35 keratoconic eyes from 22 patients. METHODS A 26,000-Hz Fourier-domain OCT system with 5-μm axial resolution was used. The cornea was imaged with a Pachymetry + Cpwr scan pattern (6-mm scan diameter, 8 radials, 1024 axial-scans each, repeated 5 times) centered on the pupil. Three scans were obtained at a single visit in a prospective study. A computer algorithm was developed to map the corneal epithelial thickness automatically. Zonal epithelial thicknesses and 5 diagnostic variables, including minimum, superior-inferior (S-I), minimum-maximum (MIN-MAX), map standard deviation (MSD), and pattern standard deviation (PSD), were calculated. Repeatability of the measurements was assessed by the pooled standard deviation. The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. MAIN OUTCOME MEASURES Descriptive statistics, repeatability, and AUC of the zonal epithelial thickness and diagnostic variables. RESULTS The central, superior, and inferior epithelial thickness averages were 52.3 ± 3.6 μm, 49.6 ± 3.5 μm, and 51.2 ± 3.4 μm in normal eyes and 51.9 ± 5.3 μm, 51.2 ± 4.2 μm, and 49.1 ± 4.3 μm in keratoconic eyes. Compared with normal eyes, keratoconic eyes had significantly lower inferior (P = 0.03) and minimum (P<0.0001) corneal epithelial thickness, greater S-I (P = 0.013), more negative MIN-MAX (P<0.0001), greater MSD (P<0.0001), and larger PSD (P<0.0001). The repeatability of the zonal average, minimum, S-I, and MIN-MAX epithelial thickness variables were between 0.7 and 1.9 μm. The repeatability of MSD was better than 0.4 μm. The repeatability of PSD was 0.02 or better. Among all epithelial thickness-based variables investigated, PSD provided the best diagnostic power (AUC = 1.00). Using an PSD cutoff value of 0.057 alone gave 100% specificity and 100% sensitivity. CONCLUSIONS High-resolution Fourier-domain OCT mapped corneal epithelial thickness with good repeatability in both normal and keratoconic eyes. Keratoconus was characterized by apical epithelial thinning. The resulting deviation from the normal epithelial pattern could be detected with very high accuracy using the PSD variable. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.


Investigative Ophthalmology & Visual Science | 2011

Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases

Yimin Wang; Amani A. Fawzi; Rohit Varma; Alfredo A. Sadun; Xinbo Zhang; Ou Tan; Joseph A. Izatt; David Huang

PURPOSE To investigate blood flow changes in retinal and optic nerve diseases with Doppler Fourier domain optical coherence tomography (OCT). METHODS Sixty-two participants were divided into five groups: normal, glaucoma, nonarteritic ischemic optic neuropathy (NAION), treated proliferative diabetic retinopathy (PDR), and branch retinal vein occlusion (BRVO). Doppler OCT was used to scan concentric circles of 3.4- and 3.75-mm diameters around the optic nerve head. Flow in retinal veins was calculated from the OCT velocity profiles. Arterial and venous diameters were measured from OCT Doppler and reflectance images. RESULTS Total retinal blood flow in normal subjects averaged 47.6 μL/min. The coefficient of variation of repeated measurements was 11% in normal eyes and 14% in diseased eyes. Eyes with glaucoma, NAION, treated PDR, and BRVO had significantly decreased retinal blood flow compared with normal eyes (P < 0.001). In glaucoma patients, the decrease in blood flow was highly correlated with the severity of visual field loss (P = 0.003). In NAION and BRVO patients, the hemisphere with more severe disease also had lower blood flow. CONCLUSIONS Doppler OCT retinal blood flow measurements showed good repeatability and excellent correlation with visual field and clinical presentations. This approach could enhance our understanding of retinal and optic nerve diseases and facilitate the development of new therapies.


British Journal of Ophthalmology | 2009

Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography

Yimin Wang; Ake Lu; John Gil-Flamer; Ou Tan; Joseph A. Izatt; David Huang

Aim: To measure total retinal blood flow in normal human eyes using Doppler Fourier-domain optical coherence tomography (FD-OCT). Methods: 10 normal people aged 35 to 69 years were measured for the right eye using Doppler FD-OCT. Double circular scans around the optic nerve heads were used. Four pairs of circular scans that transected all retinal branch vessels were completed in 2 s. Total retinal blood flow was obtained by summing the flows in the branch veins. Measurements from the eight scans were averaged. Veins with diameters >33 μm were taken into account. Results: Total retinal blood flow could be measured in eight of 10 subjects: mean (SD) = 45.6 (3.8) μl/min (range 40.8 to 52.9 μl/min). The coefficient of variation for repeated measurements was 10.5%. Measured vein diameters ranged from 33.3 to 155.4 μm. The averaged flow speed was 19.3 (2.9) mm/s, which did not correlate with vessel diameter. There was no significant difference between flows in the superior and inferior retinal hemispheres. Conclusions: Double circular scanning using Doppler FD-OCT is a rapid and reproducible method to measure total retinal blood flow. These flow values are within the range previously established by laser Doppler flowmetry.


Optics Express | 2009

Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography

Yimin Wang; Amani A. Fawzi; Ou Tan; John Gil-Flamer; David Huang

We present human retinal blood flow investigation for diabetic patients using Doppler Fourier domain optical coherence tomography (FDOCT). The scanning pattern consisted of two concentric circles around the optic nerve head. The blood flow in one patient with diabetes and no retinpathy and another patient with treated proliferative diabetic retinopathy were measured. The patient without retinopathy showed a total blood flow value at the lower level of the normal range. The flow distribution between superior and inferior retina was balanced. The patient with diabetic retinopathy had a flow value lower than the normal people. Our study shows that Doppler FD-OCT can be used to evaluate the total retinal blood flow in patients with retinal diseases.


American Journal of Ophthalmology | 2008

A Pilot Study of Fourier-Domain Optical Coherence Tomography of Retinal Dystrophy Patients

Jennifer I. Lim; Ou Tan; Amani A. Fawzi; Jill Hopkins; John Gil-Flamer; David Huang

PURPOSE To characterize the macular anatomy of retinal dystrophy eyes using high-speed, high-resolution, Fourier-domain optical coherence tomography (FD-OCT). DESIGN Case-control study. METHODS Retinal dystrophy patients and normal age- and gender-matched controls underwent FD-OCT imaging using the RTVue (Optovue Inc., Fremont, California, USA). Vertical and horizontal 8-mm scans of 1024 lines/cross-section were obtained. Based on boundaries manually drawn on computer displays of OCT cross-sections, the thicknesses of the retina, inner retinal layer (IRL), and outer retinal layer (ORL) were averaged over both 5-mm (macular) and 1.5-mm (foveal) regions centered at the fovea. The IRL was the sum of nerve fiber layer (NFL), ganglion cell layer (GCL), and inner plexiform layer (IPL) thicknesses. Total retinal thickness (RT) was measured between the internal limiting membrane (ILM) and the retinal pigment epithelium. ORL thickness was calculated by subtracting IRL thickness from RT. RESULTS Fourteen patients (three retinitis pigmentosa, two cone-rod degeneration, two Stargardt disease, and seven normal controls) underwent FD-OCT imaging. Mean foveal RT was 271.3 +/- 23.3 microm for controls and 158.4 +/- 47.1 microm for retinal dystrophy patients (P < .001). Mean macular RT was 292.8 +/- 8.1 microm for controls and 199.1 +/- 32.6 microm for retinal dystrophy patients (P < .001). Mean macular ORL was 182.9 +/- 4.7 microm for controls and 101.3 +/- 18.7 microm for retinal dystrophy patients (P < .001); mean macular IRL was 109.9 +/- 6.4 microm for controls and 97.9 +/- 20.7 microm for retinal dystrophy patients (P = .06). CONCLUSION Eyes with retinal dystrophy had a small (11%) decrease in macular IRL and severe (45%) decrease in macular ORL compared to normal controls.

Collaboration


Dive into the Ou Tan's collaboration.

Top Co-Authors

Avatar

David Huang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Rohit Varma

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Srinivas R. Sadda

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yimin Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ranjith Konduru

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge