Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ourania M. Andrisani is active.

Publication


Featured researches published by Ourania M. Andrisani.


Journal of Immunology | 2007

Vitamin a metabolites induce gut-homing FoxP3+ regulatory T cells

Seung Goo Kang; Hyung W. Lim; Ourania M. Andrisani; Hal E. Broxmeyer; Chang H. Kim

In this study, we report a novel biological function of vitamin A metabolites in conversion of naive FoxP3− CD4+ T cells into a unique FoxP3+ regulatory T cell subset (termed “retinoid-induced FoxP3+ T cells”) in both human and mouse T cells. We found that the major vitamin A metabolite all-trans-retinoic acid induces histone acetylation at the FoxP3 gene promoter and expression of the FoxP3 protein in CD4+ T cells. The induction of retinoid-induced FoxP3+ T cells is mediated by the nuclear retinoic acid receptor α and involves T cell activation driven by mucosal dendritic cells and costimulation through CD28. Retinoic acid can promote TGF-β1-dependent generation of FoxP3+ regulatory T cells but decrease the TGF-β1- and IL-6-dependent generation of inflammatory Th17 cells in mouse T cells. Retinoid-induced FoxP3+ T cells can efficiently suppress target cells and, thus, have a regulatory function typical for FoxP3+ T cells. A unique cellular feature of these regulatory T cells is their high expression of gut-homing receptors that are important for migration to the mucosal tissues particularly the small intestine. Taken together, these results identify retinoids as positive regulatory factors for generation of gut-homing FoxP3+ T cells.


Oncogene | 2001

The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner

Enrique Lara-Pezzi; Serge Roche; Ourania M. Andrisani; Francisco Sánchez-Madrid; Manuel López-Cabrera

Chronic hepatitis B virus infection is strongly associated with the development of hepatocellular carcinoma (HCC). Epithelial tumors are frequently characterized by loss of cadherin expression or function. Cadherin-dependent adhesion prevents the acquisition of a migratory and invasive phenotype, and loss of its function is itself enough for the progression from adenoma to carcinoma. The HBx protein of hepatitis B virus is thought to contribute to the development of the carcinoma, however, its role in the oncogenic and metastatic processes is far from being fully understood. We report herein the ability of HBx to disrupt intercellular adhesion in three different cell lines stably transfected with an inducible HBx expression vector. The linkage between the actin cytoskeleton and cadherin complex, which is essential for its function, is disrupted in the presence of HBx, as indicated by detergent solubility and immunoprecipitation experiments. In addition, β-catenin was tyrosine phosphorylated in HBx-expressing cells. Inhibition of the src family of tyrosine kinases resulted in the prevention of the disruption of adherens junctions. These results suggest that HBx is able to disrupt intercellular adhesion in a src-dependent manner, and provide a novel mechanism by which HBx may contribute to the development of HCC.


Molecular and Cellular Biology | 2004

Sustained activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase pathways by hepatitis B virus X protein mediates apoptosis via induction of Fas/FasL and tumor necrosis factor (TNF) receptor 1/TNF-α expression

Wen-Horng Wang; Gérald Grégori; Ronald L. Hullinger; Ourania M. Andrisani

ABSTRACT Activation of the cellular stress pathways (c-Jun N-terminal kinase [JNK] and p38 mitogen-activated protein [MAP] kinase) is linked to apoptosis. However, whether both pathways are required for apoptosis remains unresolved. Hepatitis B virus X protein (pX) activates p38 MAP kinase and JNK pathways and, in response to weak apoptotic signals, sensitizes hepatocytes to apoptosis. Employing hepatocyte cell lines expressing pX, which was regulated by tetracycline, we investigated the mechanism of apoptosis by p38 MAP kinase and JNK pathway activation. Inhibition of the p38 MAP kinase pathway rescues by 80% the initiation of pX-mediated apoptosis, whereas subsequent apoptotic events involve both pathways. pX-mediated activation of p38 MAP kinase and JNK pathways is sustained, inducing the transcription of the death receptor family genes encoding Fas/FasL and tumor necrosis factor receptor 1 (TNFR1)/TNF-α and the p53-regulated Bax and Noxa genes. The pX-dependent expression of Fas/FasL and TNFR1/TNF-α mediates caspase 8 activation, resulting in Bid cleavage. In turn, activated Bid, acting with pX-induced Bax and Noxa, mediates the mitochondrial release of cytochrome c, resulting in the activation of caspase 9 and apoptosis. Combined antibody neutralization of FasL and TNF-α reduces by 70% the initiation of pX-mediated apoptosis. These results support the importance of the pX-dependent activation of both the p38 MAP kinase and JNK pathways in pX-mediated apoptosis and suggest that this mechanism of apoptosis occurs in vivo in response to weak apoptotic signals.


Journal of Biological Chemistry | 2009

Plk1-mediated Phosphorylation of Topors Regulates p53 Stability

Xiaoming Yang; Hongchang Li; Zinan Zhou; Wen-Horng Wang; Anping Deng; Ourania M. Andrisani; Xiaoqi Liu

Polo-like kinase 1 (Plk1) overexpression is associated with tumorigenesis by an unknown mechanism. Likewise, Plk1 was suggested to act as a negative regulator of tumor suppressor p53, but the mechanism remains to be determined. Herein, we have identified topoisomerase I-binding protein (Topors), a p53-binding protein, as a Plk1 target. We show that Plk1 phosphorylates Topors on Ser718 in vivo. Significantly, expression of a Plk1-unphosphorylatable Topors mutant (S718A) leads to a dramatic accumulation of p53 through inhibition of p53 degradation. Topors is an ubiquitin and small ubiquitin-like modifier ubiquitin-protein isopeptide ligase (SUMO E3) ligase. Plk1-mediated phosphorylation of Topors inhibits Topors-mediated sumoylation of p53, whereas p53 ubiquitination is enhanced, leading to p53 degradation. These results demonstrate that Plk1 modulates Topors activity in suppressing p53 function and identify a likely mechanism for the tumorigenic potential of Plk1.


Journal of Virology | 2002

Hepatitis B virus X protein activates the p38 mitogen-activated protein kinase pathway in dedifferentiated hepatocytes.

Chi Tarn; Lin Zou; Ronald L. Hullinger; Ourania M. Andrisani

ABSTRACT Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca2+ and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G2/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes.


Cancer Research | 2015

PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during hepatitis B virus-induced liver carcinogenesis.

Hao Zhang; Ahmed Diab; Huitao Fan; Saravana Kumar Kailasam Mani; Ronald L. Hullinger; Philippe Merle; Ourania M. Andrisani

Elucidating mechanisms of hepatitis B virus (HBV)-mediated hepatocarcinogenesis is needed to gain insights into the etiology and treatment of liver cancer. Cells where HBV is replicating exhibit increased expression of Plk1 kinase and reduced levels of two transcription repression factors, SUZ12 and ZNF198. SUZ12 is an essential subunit of the transcription repressive complex PRC2. ZNF198 stabilizes the transcription repressive complex composed of LSD1, Co-REST, and HDAC1. These two transcription repressive complexes are held together by binding the long noncoding RNA HOTAIR. In this study, we linked these regulatory events mechanistically by showing that Plk1 induces proteasomal degradation of SUZ12 and ZNF198 by site-specific phosphorylation. Plk1-dependent ubiquitination of SUZ12 and ZNF198 was enhanced by expression of HOTAIR, significantly reducing SUZ12 and ZNF198 stability. In cells expressing the HBV X protein (HBx), downregulation of SUZ12 and ZNF198 mediated global changes in histone modifications. In turn, HBx-expressing cells propagated an altered chromatin landscape after cell division, as exemplified by changes in histone modifications of the EpCAM promoter, a target of PRC2 and LSD1/Co-REST/HDAC1 complexes. Notably, liver tumors from X/c-myc bitransgenic mice exhibited downregulation of SUZ12 and ZNF198 along with elevated expression of Plk1, HOTAIR, and EpCAM. Clinically, similar effects were documented in a set of HBV-related liver tumors consistent with the likelihood that downregulation of SUZ12 and ZNF198 leads to epigenetic reprogramming of infected hepatocytes. Because both Plk1 and HOTAIR are elevated in many human cancers, we propose that their combined effects are involved in epigenetic reprogramming associated broadly with oncogenic transformation.


Journal of Biological Chemistry | 2008

Hepatitis B virus X protein increases the Cdt1-to-geminin ratio inducing DNA re-replication and polyploidy.

Lova Rakotomalala; Leo Studach; Wen-Horng Wang; Gérald Grégori; Ronald L. Hullinger; Ourania M. Andrisani

Hepatitis B virus X protein (pX) is implicated in hepatocellular carcinoma pathogenesis by an unknown mechanism. Employing the tetracycline-regulated pX-expressing 4pX-1 cell line, derived from the murine AML12 hepatocyte cell line, we demonstrate that pX induces partial polyploidy (>4N DNA). Depletion of p53 in 4pX-1 cells increases by 5-fold the polyploid cells in response to pX expression, indicating that p53 antagonizes pX-induced polyploidy. Dual-parameter flow cytometric analyses show pX-dependent bromodeoxyuridine (BrdUrd) incorporation in 4pX-1 cells containing 4N and >4N DNA, suggesting pX induces DNA re-replication. Interestingly, pX increases expression of endogenous replication initiation factors Cdc6 and Cdtl while suppressing geminin expression, a negative regulator of rereplication. In comparison to a geminin knockdown 4pX-1 cell line used as DNA re-replication control, the Cdt1/geminin ratio is greater in 4pX-1 cells expressing pX, indicating that pX promotes DNA re-replication. In support of this conclusion, pX-expressing 4pX-1 cells, similar to the geminin knockdown 4pX-1 cells, continue to incorporate BrdUrd in the G2 phase and exhibit nuclear Cdc6 and MCM5 co-localization and the absence of geminin. In addition, pX expression activates the ATR kinase, the sensor of DNA re-replication, which in turn phosphorylates RAD17 and H2AX. Interestingly, phospho-H2AX-positive and BrdUrd -positive cells progress through mitosis, demonstrating a link between pX-induced DNA re-replication and polyploidy. Our studies high-light a novel function of pX that likely contributes to hepatocellular carcinoma pathogenesis.


Molecular and Cellular Biology | 1988

Three sequence-specific DNA-protein complexes are formed with the same promoter element essential for expression of the rat somatostatin gene.

Ourania M. Andrisani; D. A. Pot; Zheng Zhu; J. E. Dixon

We identified three sequence-specific DNA-protein complexes which are formed after in vitro binding of nuclear extracts, derived from neuronal (CA-77, rat brain) or non-neuronal (HeLa) cells, to positions -70 to -29 of the rat somatostatin promoter. The protein(s) responsible for the formation of the three sequence-specific complexes was fractionated from rat brain whole cell extracts by DEAE-Sepharose chromatography. The critical contact residues of the factor(s) in each complex, as determined by methylation interference analyses, are located within positions -59 to -35, which is protected from DNase I digestion; these include the G residues of a TGACGTCA consensus also found in the cAMP-responsive human enkephalin (positions -105 to -76) and E1A-inducible adenovirus type 5 E3 (positions -72 to -42) promoters. Competition assays with these heterologous promoters reveal that the factor(s) of each complex displays approximately 50-fold greater affinity for the somatostatin promoter-binding site. Synthetic oligonucleotides spanning positions -70 to -29 of the somatostatin promoter and containing single-base substitutions of the G residues in the TGACGTCA consensus were utilized in competition assays. The G residues located in the center of the module are the most critical determinants in the formation of the three sequence-specific complexes. Deletions disrupting the TGACGTCA consensus abolish not only formation of the three complexes in vitro but also expression of the somatostatin promoter in vivo, suggesting that formation of one or more of these complexes is essential for transcription of the rat somatostatin gene.


Hepatology | 2011

Proteins ZNF198 and SUZ12 are down‐regulated in hepatitis B virus (HBV) X protein‐mediated hepatocyte transformation and in HBV replication

Wen-Horng Wang; Leo Studach; Ourania M. Andrisani

Chronic hepatitis B virus (HBV) infection is a major etiologic factor in hepatocellular carcinoma (HCC) pathogenesis, involving effects of chronic liver inflammation and of the weakly oncogenic HBV X protein (pX). pX‐mediated hepatocyte transformation requires Polo‐like kinase1 (Plk1) activity, but the mechanism is not fully understood. We identified by a genome‐wide short hairpin RNA (shRNA) library screen the genes zinc finger, MYM‐type 2 (ZNF198) and suppressor of zeste 12 homolog (Drosophila) (SUZ12) whose protein depletion rescues pX‐expressing cells from DNA damage‐induced apoptosis. ZNF198 and SUZ12 are components of chromatin remodeling complexes and associate with promyelocytic leukemia (PML) nuclear bodies. Knockdown of ZNF198 and SUZ12 by small interfering RNA (siRNA) reduced p53 stability and DNA repair, rescued pX‐expressing hepatocytes from DNA damage‐induced apoptosis, and increased pX‐induced polyploidy and oncogenic transformation, suggesting ZNF198 and SUZ12 have a role in pX‐mediated transformation. Interestingly, during pX‐mediated transformation the protein but not messenger RNA (mRNA) levels of ZNF198 and SUZ12 progressively decreased, whereas Plk1 levels increased. Inhibition of Plk1 activity restored protein levels of ZNF198 and SUZ12. In addition, transfected Polo‐box‐domain (PBD) of Plk1 coimmunoprecipitated with ZNF198 and SUZ12, suggesting that these proteins are Plk1 substrates. Elevated Plk1 and reduced protein levels of ZNF198 and SUZ12 were also observed in human liver cancer cell lines derived from HBV‐related tumors and in the presence of HBV replication. Importantly, knockdown by siRNA of ZNF198 and SUZ12 enhanced HBV replication. Conclusion: Reduced protein levels of ZNF198 and SUZ12 and elevated Plk1 occur during pX‐mediated hepatocyte transformation in human liver cancer cell lines, as well as during HBV replication, underscoring the significance of these genes both in HBV‐mediated HCC pathogenesis and HBV replication. We propose Plk1 activity down‐regulates ZNF198 and SUZ12, thereby enhancing both HBV replication and pX‐mediated oncogenic transformation. (HEPATOLOGY 2011)


Molecular and Cellular Biology | 2000

Cyclic AMP Signaling Functions as a Bimodal Switch in Sympathoadrenal Cell Development in Cultured Primary Neural Crest Cells

Matthew L. Bilodeau; Theresa Boulineau; Ronald L. Hullinger; Ourania M. Andrisani

ABSTRACT Cells of the vertebrate neural crest (crest cells) are an invaluable model system to address cell fate specification. Crest cells are amenable to tissue culture, and they differentiate to a variety of neuronal and nonneuronal cell types. Earlier studies have determined that bone morphogenetic proteins (BMP-2, -4, and -7) and agents that elevate intracellular cyclic AMP (cAMP) stimulate the development of the sympathoadrenal (SA, adrenergic) lineage in neural crest cultures. To investigate whether interactive mechanisms between signaling pathways influence crest cell differentiation, we characterized the combinatorial effects of BMP-2 and cAMP-elevating agents on the development of quail trunk neural crest cells in primary culture. We report that the cAMP signaling pathway modulates both positive and negative signals influencing the development of SA cells. Specifically, we show that moderate activation of cAMP signaling promotes, in synergy with BMP-2, SA cell development and the expression of the SA lineage-determining gene Phox2a. By contrast, robust activation of cAMP signaling opposes, even in the presence of BMP-2, SA cell development and the expression of the SA lineage-determining ASH-1 and Phox2 genes. We conclude that cAMP signaling acts as a bimodal regulator of SA cell development in neural crest cultures.

Collaboration


Dive into the Ourania M. Andrisani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Zhang

China Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge