Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ousmane H. Cissé is active.

Publication


Featured researches published by Ousmane H. Cissé.


Mbio | 2012

De Novo Assembly of the Pneumocystis jirovecii Genome from a Single Bronchoalveolar Lavage Fluid Specimen from a Patient

Ousmane H. Cissé; Marco Pagni; Philippe M. Hauser

ABSTRACT Pneumocystis jirovecii is a fungus that causes severe pneumonia in immunocompromised patients. However, its study is hindered by the lack of an in vitro culture method. We report here the genome of P. jirovecii that was obtained from a single bronchoalveolar lavage fluid specimen from a patient. The major challenge was the in silico sorting of the reads from a mixture representing the different organisms of the lung microbiome. This genome lacks virulence factors and most amino acid biosynthesis enzymes and presents reduced GC content and size. Together with epidemiological observations, these features suggest that P. jirovecii is an obligate parasite specialized in the colonization of human lungs, which causes disease only in immune-deficient individuals. This genome sequence will boost research on this deadly pathogen. IMPORTANCE Pneumocystis pneumonia is a major cause of mortality in patients with impaired immune systems. The availability of the P. jirovecii genome sequence allows new analyses to be performed which open avenues to solve critical issues for this deadly human disease. The most important ones are (i) identification of nutritional supplements for development of culture in vitro, which is still lacking 100 years after discovery of the pathogen; (ii) identification of new targets for development of new drugs, given the paucity of present treatments and emerging resistance; and (iii) identification of targets for development of vaccines. Pneumocystis pneumonia is a major cause of mortality in patients with impaired immune systems. The availability of the P. jirovecii genome sequence allows new analyses to be performed which open avenues to solve critical issues for this deadly human disease. The most important ones are (i) identification of nutritional supplements for development of culture in vitro, which is still lacking 100 years after discovery of the pathogen; (ii) identification of new targets for development of new drugs, given the paucity of present treatments and emerging resistance; and (iii) identification of targets for development of vaccines.


Mbio | 2013

Genome Sequencing of the Plant Pathogen Taphrina deformans, the Causal Agent of Peach Leaf Curl

Ousmane H. Cissé; João M. G. C. F. Almeida; Álvaro Fonseca; Ajay Kumar; Jarkko Salojärvi; Kirk Overmyer; Philippe M. Hauser; Marco Pagni

ABSTRACT Taphrina deformans is a fungus responsible for peach leaf curl, an important plant disease. It is phylogenetically assigned to the Taphrinomycotina subphylum, which includes the fission yeast and the mammalian pathogens of the genus Pneumocystis. We describe here the genome of T. deformans in the light of its dual plant-saprophytic/plant-parasitic lifestyle. The 13.3-Mb genome contains few identifiable repeated elements (ca. 1.5%) and a relatively high GC content (49.5%). A total of 5,735 protein-coding genes were identified, among which 83% share similarities with other fungi. Adaptation to the plant host seems reflected in the genome, since the genome carries genes involved in plant cell wall degradation (e.g., cellulases and cutinases), secondary metabolism, the hallmark glyoxylate cycle, detoxification, and sterol biosynthesis, as well as genes involved in the biosynthesis of plant hormones. Genes involved in lipid metabolism may play a role in its virulence. Several locus candidates for putative MAT cassettes and sex-related genes akin to those of Schizosaccharomyces pombe were identified. A mating-type-switching mechanism similar to that found in ascomycetous yeasts could be in effect. Taken together, the findings are consistent with the alternate saprophytic and parasitic-pathogenic lifestyles of T. deformans. IMPORTANCE Peach leaf curl is an important plant disease which causes significant losses of fruit production. We report here the genome sequence of the causative agent of the disease, the fungus Taphrina deformans. The genome carries characteristic genes that are important for the plant infection process. These include (i) proteases that allow degradation of the plant tissues; (ii) secondary metabolites which are products favoring interaction of the fungus with the environment, including the host; (iii) hormones that are responsible for the symptom of severely distorted leaves on the host; and (iv) drug detoxification enzymes that confer resistance to fungicides. The availability of the genome allows the design of new drug targets as well as the elaboration of specific management strategies to fight the disease. Peach leaf curl is an important plant disease which causes significant losses of fruit production. We report here the genome sequence of the causative agent of the disease, the fungus Taphrina deformans. The genome carries characteristic genes that are important for the plant infection process. These include (i) proteases that allow degradation of the plant tissues; (ii) secondary metabolites which are products favoring interaction of the fungus with the environment, including the host; (iii) hormones that are responsible for the symptom of severely distorted leaves on the host; and (iv) drug detoxification enzymes that confer resistance to fungicides. The availability of the genome allows the design of new drug targets as well as the elaboration of specific management strategies to fight the disease.


Microbes and Infection | 2011

Permissivity of Vero cells, human pneumocytes and human endometrial cells to Waddlia chondrophila

Carole Kebbi-Beghdadi; Ousmane H. Cissé; Gilbert Greub

Growing evidence suggests that the bacterium Waddlia chondrophila, a novel member of the Chlamydiales order, is an agent of miscarriage in humans and abortion in ruminants. We thus investigated the permissivity of three epithelial cell lines, primate Vero kidney cells, human A549 pneumocytes and human Ishikawa endometrial cells to this strict intracellular bacteria. Bacterial growth kinetics in these cell lines was assessed by quantitative PCR and immunofluorescence and our results demonstrated that W. chondrophila enters and efficiently multiplies in these epithelial cell lines. Additionally, confocal and electron microscopy indicated that the bacteria co-localize with host cell mitochondria. Within Vero and A549 cells, intracellular growth of W. chondrophila was associated with a significant decrease in host cell viability while no such cytophatic effect was detected in Ishikawa cells. Bacterial cell growth in this endometrial cell line stopped 48 h after infection. This stop in the replication of W. chondrophila coincided with the appearance of large aberrant bodies, a form of the bacteria also observed in Chlamydiaceae and associated with persistence. This persistent state of W. chondrophila may explain recurrent episodes of miscarriage in vivo, since the bacteria might reactivate within endometrial cells following hormonal changes that occur during pregnancy.


Genome Biology and Evolution | 2014

Comparative Genomics suggests that the Human Pathogenic Fungus Pneumocystis jirovecii acquired Obligate Biotrophy through Gene Loss

Ousmane H. Cissé; Marco Pagni; Philippe M. Hauser

Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses.


PLOS ONE | 2010

Comparative genomics suggests that the fungal pathogen Pneumocystis is an obligate parasite scavenging amino acids from its host's lungs.

Philippe M. Hauser; Frédéric Burdet; Ousmane H. Cissé; Laurent Keller; Patrick Taffé; Dominique Sanglard; Marco Pagni

Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8’085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4’974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the “amino acid metabolism” category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their hosts lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans.


Nature Communications | 2017

Innovation and constraint leading to complex multicellularity in the Ascomycota

Tu Anh Nguyen; Ousmane H. Cissé; Jie Yun Wong; Peng Zheng; David Hewitt; Minou Nowrousian; Jason E. Stajich; Gregory Jedd

The advent of complex multicellularity (CM) was a pivotal event in the evolution of animals, plants and fungi. In the fungal Ascomycota, CM is based on hyphal filaments and arose in the Pezizomycotina. The genus Neolecta defines an enigma: phylogenetically placed in a related group containing mostly yeasts, Neolecta nevertheless possesses Pezizomycotina-like CM. Here we sequence the Neolecta irregularis genome and identify CM-associated functions by searching for genes conserved in Neolecta and the Pezizomycotina, which are absent or divergent in budding or fission yeasts. This group of 1,050 genes is enriched for functions related to diverse endomembrane systems and their organization. Remarkably, most show evidence for divergence in both yeasts. Using functional genomics, we identify new genes involved in fungal complexification. Together, these data show that rudimentary multicellularity is deeply rooted in the Ascomycota. Extensive parallel gene divergence during simplification and constraint leading to CM suggest a deterministic process where shared modes of cellular organization select for similarly configured organelle- and transport-related machineries.


Fems Immunology and Medical Microbiology | 2015

OmpA family proteins and Pmp-like autotransporter: new adhesins of Waddlia chondrophila.

Carole Kebbi-Beghdadi; Andreas Domröse; Elisabeth Becker; Ousmane H. Cissé; Johannes H. Hegemann; Gilbert Greub

Waddlia chondrophila is a obligate intracellular bacterium belonging to the Chlamydiales order, a clade that also includes the well-known classical Chlamydia responsible for a number of severe human and animal diseases. Waddlia is an emerging pathogen associated with adverse pregnancy outcomes in humans and abortion in ruminants. Adhesion to the host cell is an essential prerequisite for survival of every strict intracellular bacteria and, in classical Chlamydia, this step is partially mediated by polymorphic outer membrane proteins (Pmps), a family of highly diverse autotransporters that represent about 15% of the bacterial coding capacity. Waddlia chondrophila genome however only encodes one putative Pmp-like protein. Using a proteomic approach, we identified several bacterial proteins potentially implicated in the adhesion process and we characterized their expression during the replication cycle of the bacteria. In addition, we demonstrated that the Waddlia Pmp-like autotransporter as well as OmpA2 and OmpA3, two members of the extended Waddlia OmpA protein family, exhibit adhesive properties on epithelial cells. We hypothesize that the large diversity of the OmpA protein family is linked to the wide host range of these bacteria that are able to enter and multiply in various host cells ranging from protozoa to mammalian and fish cells.


The Journal of Infectious Diseases | 2018

Characterization of p57, a Stage-Specific Antigen of Pneumocystis murina

Lisa R. Bishop; A. Sally Davis; Kaitlynn Nicole Bradshaw; Monica Gamez; Ousmane H. Cissé; Honghui Wang; Liang Ma; Joseph A. Kovacs

Pneumocystis has a large multicopy gene family encoding proteins related to the major surface glycoprotein (Msg), whose functions are largely unknown. We expressed one such protein of Pneumocystis murina, p57, which is encoded by 3 highly conserved genes, and demonstrated by immunoblot that immunocompetent mice that were immunized with crude Pneumocystis antigens or that had cleared Pneumocystis infection developed antibodies to p57. Using hyperimmune anti-p57 serum combined with immunolabeling, we found that p57 was expressed by small trophic forms and intracystic bodies, whereas it was not expressed on larger trophic forms or externally by cysts. Expression of p57 and Msg by trophic forms was largely mutually exclusive. Treatment of infected animals with caspofungin inhibited cyst formation and markedly decreased p57 expression. While p57 expression was seen in immunocompetent mice infected with Pneumocystis, immunization with recombinant p57 did not result in altered cytokine expression by lymphocytes or in diminished infection in such mice. Thus, p57 appears to be a stage-specific antigen of Pneumocystis that is expressed on intracystic bodies and young trophic forms and may represent a mechanism to conserve resources in organisms during periods of limited exposure to host immune responses.


Mbio | 2018

Functional and Expression Analyses of the Pneumocystis MAT Genes Suggest Obligate Sexuality through Primary Homothallism within Host Lungs

Sophie Richard; João M. G. C. F. Almeida; Ousmane H. Cissé; Amanda Luraschi; O. Nielsen; Marco Pagni; Philippe M. Hauser

ABSTRACT Fungi of the genus Pneumocystis are obligate parasites that colonize mammals’ lungs and are host species specific. Pneumocystis jirovecii and Pneumocystis carinii infect, respectively, humans and rats. They can turn into opportunistic pathogens in immunosuppressed hosts, causing severe pneumonia. Their cell cycle is poorly known, mainly because of the absence of an established method of culture in vitro. It is thought to include both asexual and sexual phases. Comparative genomic analysis suggested that their mode of sexual reproduction is primary homothallism involving a single mating type (MAT) locus encompassing plus and minus genes (matMc, matMi, and matPi; Almeida et al., mBio 6:e02250-14, 2015). Thus, each strain would be capable of sexual reproduction alone (self-fertility). However, this is a working hypothesis derived from computational analyses that is, in addition, based on the genome sequences of single isolates. Here, we tested this hypothesis in the wet laboratory. The function of the P. jirovecii and P. carinii matMc genes was ascertained by restoration of sporulation in the corresponding mutant of fission yeast. Using PCR, we found the same single MAT locus in all P. jirovecii isolates and showed that all three MAT genes are often concomitantly expressed during pneumonia. Extensive homology searches did not identify other types of MAT transcription factors in the genomes or cis-acting motifs flanking the MAT locus that could have been involved in MAT switching or silencing. Our observations suggest that Pneumocystis sexuality through primary homothallism is obligate within host lungs to complete the cell cycle, i.e., produce asci necessary for airborne transmission to new hosts. IMPORTANCE Fungi of the genus Pneumocystis colonize the lungs of mammals. In immunosuppressed human hosts, Pneumocystis jirovecii may cause severe pneumonia that can be fatal. This disease is one of the most frequent life-threatening invasive fungal infections in humans. The analysis of the genome sequences of these uncultivable pathogens suggested that their sexual reproduction involves a single partner (self-fertilization). Here, we report laboratory experiments that support this hypothesis. The function of the three genes responsible for sexual differentiation was ascertained by the restoration of sexual reproduction in the corresponding mutant of another fungus. As predicted by self-fertilization, all P. jirovecii isolates harbored the same three genes that were often concomitantly expressed within human lungs during infection. Our observations suggest that the sexuality of these pathogens relies on the self-fertility of each isolate and is obligate within host lungs to complete the cell cycle and allow dissemination of the fungus to new hosts. IMPORTANCE Fungi of the genus Pneumocystis colonize the lungs of mammals. In immunosuppressed human hosts, Pneumocystis jirovecii may cause severe pneumonia that can be fatal. This disease is one of the most frequent life-threatening invasive fungal infections in humans. The analysis of the genome sequences of these uncultivable pathogens suggested that their sexual reproduction involves a single partner (self-fertilization). Here, we report laboratory experiments that support this hypothesis. The function of the three genes responsible for sexual differentiation was ascertained by the restoration of sexual reproduction in the corresponding mutant of another fungus. As predicted by self-fertilization, all P. jirovecii isolates harbored the same three genes that were often concomitantly expressed within human lungs during infection. Our observations suggest that the sexuality of these pathogens relies on the self-fertility of each isolate and is obligate within host lungs to complete the cell cycle and allow dissemination of the fungus to new hosts.


Genome Biology and Evolution | 2016

CRISPR system acquisition and evolution of an obligate intracellular Chlamydia-related bacterium

Claire Bertelli; Ousmane H. Cissé; Brigida Rusconi; Carole Kebbi-Beghdadi; Antony Croxatto; Alexander Goesmann; François Collyn; Gilbert Greub

Recently, a new Chlamydia-related organism, Protochlamydia naegleriophila KNic, was discovered within a Naegleria amoeba. To decipher the mechanisms at play in the modeling of genomes from the Protochlamydia genus, we sequenced the full genome of Pr. naegleriophila, which includes a 2,885,090 bp chromosome and a 145,285 bp megaplasmid. For the first time within the Chlamydiales order, we describe the presence of a clustered regularly interspaced short palindromic repeats (CRISPR) system, the immune system of bacteria, located on the chromosome. It is composed of a small CRISPR locus comprising eight repeats and associated cas-cse genes of the subtype I-E. A CRISPR locus is also present within Chlamydia sp. Diamant, another Pr. naegleriophila strain, suggesting that the CRISPR system was acquired by a common ancestor of Pr. naegleriophila, after its divergence from Pr. amoebophila. Both nucleotide bias and comparative genomics approaches identified probable horizontal gene acquisitions within two and four genomic islands in Pr. naegleriophila KNic and Diamant genomes, respectively. The plasmid encodes an F-type conjugative system highly similar to 1) that found in the Pam100G genomic island of Pr. amoebophila UWE25 chromosome, as well as on the plasmid of Rubidus massiliensis and 2) to the three genes remaining in the chromosome of Parachlamydia acanthamoebae strains. Therefore, this conjugative system was likely acquired on an ancestral plasmid before the divergence of Parachlamydiaceae. Overall, this new complete Pr. naegleriophila genome sequence enables further investigation of the dynamic processes shaping the genomes of the family Parachlamydiaceae and the genus Protochlamydia.

Collaboration


Dive into the Ousmane H. Cissé's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Pagni

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph A. Kovacs

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Liang Ma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa R. Bishop

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge