Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ousmane Seidou is active.

Publication


Featured researches published by Ousmane Seidou.


Journal of Environmental Management | 2015

Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin.

A. El-Khoury; Ousmane Seidou; David R. Lapen; Z. Que; Majid Mohammadian; Mark Sunohara; D. Bahram

Both climate and land use changes can influence water quality and quantity in different ways. Thus, for predicting future water quality and quantity trends, simulations should ideally account for both projected climate and land use changes. In this paper, land use projections and climate change scenarios were integrated with a hydrological model to estimate the relative impact of climate and land use projections on a suite of water quality and quantity endpoints for a Canadian watershed. Climatic time series representing SRES change scenario A2 were generated by downscaling the outputs of the Canadian Regional Climate Model (version 4.1.1) using a combination of quantile-quantile transformation and nearest neighbor search. The SWAT (Soil and Water Assessment Tool) model was used to simulate streamflow, nitrogen and phosphorus loading under different climate and land use scenarios. Results showed that a) climate change will drive up maximum monthly streamflow, nitrate loads, and organic phosphorus loads, while decreasing organic nitrogen and nitrite loads; and b) land use changes were found to drive the same water quality/quantity variables in the same direction as climate change, except for organic nitrogen loads, for which the effects of the two stressors had a reverse impact on loading.


Water Resources Research | 2008

Intercomparison of homogenization techniques for precipitation data

Claudie Beaulieu; Ousmane Seidou; Taha B. M. J. Ouarda; Xuebin Zhang; Gilles Boulet; Abderrahmane Yagouti

This paper presents an intercomparison of eight statistical tests to detect inhomogeneities in climatic data. The objective was to select those that are more suitable for precipitation data in the southern and central regions of the province of Quebec, Canada. The performances of these methods were evaluated by simulation on several thousands of homogeneous and inhomogeneous synthetic series. These series were generated to reproduce the statistical characteristics of typical precipitations observed in the southern and central parts of the province of Quebec and nearby areas, Canada. It was found that none of these methods was efficient for all types of inhomogeneities, but some of them performed substantially better than others: the bivariate test, the Jaruskovas method, and the standard normal homogeneity test. Techniques such as the Student sequential test and the two-phase regression led to the worst performances. The analysis of the performances of each method in several situations allowed the design of an optimal procedure that takes advantage of the strengths of the best performing techniques.


Climatic Change | 2017

Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins

Tobias Vetter; Julia Reinhardt; Martina Flörke; Ann van Griensven; Fred Hattermann; Shaochun Huang; Hagen Koch; Ilias Pechlivanidis; Stefan Plötner; Ousmane Seidou; Buda Su; R. Willem Vervoort; Valentina Krysanova

This paper aims to evaluate sources of uncertainty in projected hydrological changes under climate change in twelve large-scale river basins worldwide, considering the mean flow and the two runoff quantiles Q10 (high flow), and Q90 (low flow). First, changes in annual low flow, annual high flow and mean annual runoff were evaluated using simulation results from a multi-hydrological-model (nine hydrological models, HMs) and a multi-scenario approach (four Representative Concentration Pathways, RCPs, five CMIP5 General Circulation Models, GCMs). Then, three major sources of uncertainty (from GCMs, RCPs and HMs) were analyzed using the ANOVA method, which allows for decomposing variances and indicating the main sources of uncertainty along the GCM-RCP-HM model chain. Robust changes in at least one runoff quantile or the mean flow, meaning a high or moderate agreement of GCMs and HMs, were found for five river basins: the Lena, Tagus, Rhine, Ganges, and Mackenzie. The analysis of uncertainties showed that in general the largest share of uncertainty is related to GCMs, followed by RCPs, and the smallest to HMs. The hydrological models are the lowest contributors of uncertainty for Q10 and mean flow, but their share is more significant for Q90.


Natural Hazards | 2012

Climate change impacts on extreme floods I: combining imperfect deterministic simulations and non-stationary frequency analysis

Ousmane Seidou; Andrea Ramsay; Ioan Nistor

Flood quantiles are routinely used in hydrologic engineering to design hydraulic structures, optimize erosion control structure and map the extent of floodplains. As an increasing number of papers are pointing out cycles and trends in hydrologic time series, the use of stationary flood distributions leads to the overestimation or underestimation of the hydrologic risk at a given time. Several authors tried to address this problem by using probability distributions with time-varying parameters. The parameters of these distributions were assumed to follow a linear or quadratic trend in time, which may be valid for the short term but may lead to unrealistic long-term projections. On the other hand, deterministic rainfall-runoff models are able to successfully reproduce trends and cycles in stream flow data but can perform poorly in reproducing daily flows and flood peaks. Rainfall-runoff models typically have a better performance when simulation results are aggregated at a larger time scale (e.g. at a monthly time scale vs. at a daily time scale). The strengths of these two approaches are combined in this paper where the annual maximum of the time-averaged outputs of a hydrologic model are used to modulate the parameters of a non-stationary GEV model of the daily maximum flow. The method was applied to the Kemptville Creek located in Ontario, Canada, using the SWAT (Soil and Water Assessment Tool) model as rainfall-runoff model. The parameters of the non-stationary GEV model are then estimated using Monte Carlo Markov Chain, and the optimal span of the time windows over which the SWAT outputs were averaged was selected using Bayes factors. Results show that using the non-stationary GEV distribution with a location parameter linked to the maximum 9-day average flow provides a much better estimation of flood quantiles than applying a stationary frequency analysis to the simulated peak flows.


Water Resources Research | 2009

Intercomparison of homogenization techniques for precipitation data continued: comparison of two recent Bayesian change point models.

Claudie Beaulieu; Ousmane Seidou; Taha B. M. J. Ouarda; Xuebin Zhang

In this paper, two new Bayesian change point techniques are described and compared to eight other techniques presented in previous work to detect inhomogeneities in climatic series. An inhomogeneity can be defined as a change point (a time point in a series such that the observations have a different distribution before and after this time) in the data series induced from changes in measurement conditions at a given station. It is important to be able to detect and correct an inhomogeneity, as it can interfere with the real climate change signal. The first technique is a Bayesian method of multiple change point detection in a multiple linear regression. The second one allows the detection of a single change point in a multiple linear regression. These two techniques have never been used for homogenization purposes. The ability of the two techniques to discriminate homogeneous and inhomogeneous series was evaluated using simulated data series. Various sets of synthetic series (homogeneous, with a single shift, and with multiple shifts) representing the typical total annual precipitation observed in the southern and central parts of the province of Quebec, Canada, and nearby areas were generated for the purpose of this study. The two techniques gave small false detection rates on the homogeneous series. Furthermore, the two techniques proved to be efficient for the detection of a single shift in a series. For the series with multiple shifts, the Bayesian method of multiple change point detection performed better. An application to a real data set is also provided and validated with the available metadata.


Natural Hazards | 2012

Climate change impacts on extreme floods II: improving flood future peaks simulation using non-stationary frequency analysis

Ousmane Seidou; Andrea Ramsay; Ioan Nistor

In the companion paper, Seidou et al. (2011, submitted) have shown that when adequate meteorological data are available to calibrate rainfall-runoff models, using a non-stationary GEV model with the simulated flows can provide a better description of flood peaks distributions than directly using the simulated peaks. Their methodology is extended in this paper to improve future flood peaks simulation under a changing climate. In this case, the rainfall-runoff model is forced with the downscaled outputs of the Canadian General Circulation Model CGCM3. Special attention is paid to the statistical downscaling of precipitations, as the choice of the transfer function has a significant influence on the performance of non-stationary GEV model. Stepwise regression was initially used to describe precipitation occurrence and intensity, but the patterns of the simulated hydrographs were found to be unsatisfactory. After precipitation occurrence model was successfully replaced with an ensemble of regression trees, the non-stationary GEV model was shown to provide a better description of flood peaks in the observation period. The non-stationary GEV model shows that exceedance probabilities on the Kemptville Creek will gradually rise up to 34% above current levels in 2100 for a 20-year service life.


Climatic Change | 2017

An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins

Stephanie Eisner; Martina Flörke; Alejandro Chamorro; Prasad Daggupati; Chantal Donnelly; Jinlong Huang; Yeshewatesfa Hundecha; Hagen Koch; A. Kalugin; Inna Krylenko; Vimal Mishra; Mikołaj Piniewski; Luis Samaniego; Ousmane Seidou; M. Wallner; Valentina Krysanova

The paper investigates climate change impacts on streamflow seasonality for a set of eleven representative large river basins covering all continents and a wide range of climatic and physiographic settings. Based on an ensemble of nine regional hydrological models driven by climate projections derived from five global circulation models under four representative concentration pathways, we analyzed the median and range of projected changes in seasonal streamflow by the end of the twenty-first century and examined the uncertainty arising from the different members of the modelling chain. Climate change impacts on the timing of seasonal streamflow were found to be small except for two basins. In many basins, we found an acceleration of the existing seasonality pattern, i.e. high-flows are projected to increase and/or low-flows are projected to decrease. In some basins the hydrologic projections indicate opposite directions of change which cancel out in the ensemble median, i.e., no robust conclusions could be drawn. In the majority of the basins, differences in projected streamflow seasonality between the low emission pathway and the high emission pathway are small with the exception of four basins. For these basins our results allow conclusions on the potential benefits (or adverse effects) of avoided GHG emissions for the seasonal streamflow regime.


Journal of Hydraulic Engineering | 2016

Boundary Shear Stress in an Ice-Covered River during Breakup

Soheil Ghareh Aghaji Zare; Stephanie A. Moore; Colin D. Rennie; Ousmane Seidou; Habib Ahmari; Jarrod Malenchak

AbstractRiver ice complicates river hydraulics and morphodynamics by adding a new boundary layer to the top of the flow. This boundary layer affects the velocity distribution throughout the depth due to increased flow resistance, and varies the local boundary shear stress on the bed (lower boundary) by adding new shear stress on the upper boundary (under surface of the ice). Variation of shear stress plays an important role in incipient motion of upper and lower boundary materials: sediment motion and transport are directly affected by local boundary shear stress, as are ice cover thickness, condition, and progression. This paper provides estimates of upper and lower boundary shear stress during stable ice cover and the important stage of ice cover breakup using available methods based on continuous field measurements of velocity profiles obtained with a bottom-mounted acoustic Doppler current profiler in the Nelson River, Canada. Boundary shear stresses varied dynamically with transformation of the ice c...


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2015

Changes to flow regime on the Niger River at Koulikoro under a changing climate

Amadou Angelina; Abdouramane Gado Djibo; Ousmane Seidou; Ibrah Seidou Sanda; Ketvara Sittichok

Abstract A significant decrease in mean river flow as well as shifts in flood regimes have been reported at several locations along the River Niger. These changes are the combined effect of persistent droughts, damming and increased consumption of water. Moreover, it is believed that climate change will impact on the hydrological regime of the river in the next decades and exacerbate existing problems. While decision makers and stakeholders are aware of these issues, it is hard for them to figure out what actions should be taken without a quantitative estimate of future changes. In this paper, a Soil and Water Assessment Tool (SWAT) model of the Niger River watershed at Koulikoro was successfully calibrated, then forced with the climate time series of variable length generated by nine regional climate models (RCMs) from the AMMA-ENSEMBLES experiment. The RCMs were run under the SRES A1B emissions scenario. A combination of quantile-quantile transformation and nearest-neighbour search was used to correct biases in the distributions of RCM outputs. Streamflow time series were generated for the 2026–2050 period (all nine RCMs), and for the 2051–2075 and 2076–2100 periods (three out of nine RCMs) based on the availability of RCM simulations. It was found that the quantile-quantile transformation improved the simulation of both precipitation extremes and ratio of monthly dry days/wet days. All RCMs predicted an increase in temperature and solar radiation, and a decrease in average annual relative humidity in all three future periods relative to the 1981–1989 period, but there was no consensus among them about the direction of change of annual average wind speed, precipitation and streamflow. When all model projections were averaged, mean annual precipitation was projected to decrease, while the total precipitation in the flood season (August, September, October) increased, driving the mean annual flow up by 6.9% (2026–2050), 0.9% (2051–2075) and 5.6% (2076–2100). A t-test showed that changes in multi-model annual mean flow and annual maximum monthly flow between all four periods were not statistically significant at the 95% confidence level.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2016

Statistical seasonal rainfall and streamflow forecasting for the Sirba watershed, West Africa, using sea-surface temperatures

Ketvara Sittichok; A. Gado Djibo; Ousmane Seidou; H. Moussa Saley; Harouna Karambiri; Jean Emmanuel Paturel

ABSTRACT The ability of various statistical techniques to forecast the July-August-September (JAS) total rainfall and monthly streamflow in the Sirba watershed (West Africa) was tested. First, multiple linear regression was used to link predictors derived from the Atlantic and Pacific sea-surface temperatures (SST) to JAS rainfall in the watershed up to 18 months ahead; then, daily precipitation was generated using temporal disaggregation; and finally, a rainfall–runoff model was used to generate future hydrographs. Different combinations of lag times and time windows on which SSTs were averaged were considered. Model performance was assessed using the Nash-Sutcliffe coefficient (Ef), the coefficient of determination (R2) and a three-category hit score (H). The best results were achieved using the Pacific Ocean SST averaged over the March–June period of the year, before the rainy season, and led to a performance of R2 = 0.458, Ef = 0.387 and H = 66.67% for JAS total rainfall, and R2 = 0.552, Ef = 0.487 and H = 73.28% for monthly streamflow. Editor D. Koutsoyiannis; Associate editor Not assigned

Collaboration


Dive into the Ousmane Seidou's collaboration.

Top Co-Authors

Avatar

Taha B. M. J. Ouarda

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard Bobée

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André St-Hilaire

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge