Outi Kummu
University of Oulu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Outi Kummu.
Nature Medicine | 2007
Zeneng Wang; Stephen J. Nicholls; E. Rene Rodriguez; Outi Kummu; Sohvi Hörkkö; John Barnard; Wanda F Reynolds; Eric J. Topol; Joseph A. DiDonato; Stanley L. Hazen
Post-translational modification and functional impairment of proteins through carbamylation is thought to promote vascular dysfunction during end-stage renal disease. Cyanate, a reactive species in equilibrium with urea, carbamylates protein lysine residues to form ε-carbamyllysine (homocitrulline), altering protein structure and function. We now report the discovery of an alternative and quantitatively dominant mechanism for cyanate formation and protein carbamylation at sites of inflammation and atherosclerotic plaque: myeloperoxidase-catalyzed oxidation of thiocyanate, an anion abundant in blood whose levels are elevated in smokers. We also show that myeloperoxidase-catalyzed lipoprotein carbamylation facilitates multiple pro-atherosclerotic activities, including conversion of low-density lipoprotein into a ligand for macrophage scavenger receptor A1 recognition, cholesterol accumulation and foam-cell formation. In two separate clinical studies (combined n = 1,000 subjects), plasma levels of protein-bound homocitrulline independently predicted increased risk of coronary artery disease, future myocardial infarction, stroke and death. We propose that protein carbamylation is a mechanism linking inflammation, smoking, uremia and coronary artery disease pathogenesis.
PLOS ONE | 2012
S. Pauliina Turunen; Outi Kummu; Kirsi Harila; Marja Veneskoski; Rabah Soliymani; Marc Baumann; Pirkko J. Pussinen; Sohvi Hörkkö
Objective Increased risk for atherosclerosis is associated with infectious diseases including periodontitis. Natural IgM antibodies recognize pathogen-associated molecular patterns on bacteria, and oxidized lipid and protein epitopes on low-density lipoprotein (LDL) and apoptotic cells. We aimed to identify epitopes on periodontal pathogen Porphyromonas gingivalis recognized by natural IgM binding to malondialdehyde (MDA) modified LDL. Methods and Results Mouse monoclonal IgM (MDmAb) specific for MDA-LDL recognized epitopes on P. gingivalis on flow cytometry and chemiluminescence immunoassays. Immunization of C57BL/6 mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and apoptotic cells. Immunization of LDLR−/− mice with P. gingivalis induced IgM, but not IgG, immune response to MDA-LDL and diminished aortic lipid deposition. On Western blot MDmAb bound to P. gingivalis fragments identified as arginine-specific gingipain (Rgp) by mass spectrometry. Recombinant domains of Rgp produced in E. coli were devoid of phosphocholine epitopes but contained epitopes recognized by MDmAb and human serum IgM. Serum IgM levels to P. gingivalis were associated with anti-MDA-LDL levels in humans. Conclusion Gingipain of P. gingivalis is recognized by natural IgM and shares molecular identity with epitopes on MDA-LDL. These findings suggest a role for natural antibodies in the pathogenesis of two related inflammatory diseases, atherosclerosis and periodontitis.
International Immunology | 2013
Chunguang Wang; S. Pauliina Turunen; Outi Kummu; Marja Veneskoski; Jaakko Lehtimäki; Antti Nissinen; Sohvi Hörkkö
Malondialdehyde acetaldehyde (MAA) adducts are generated under oxidative stress and shown to be highly immunogenic. Our aim was to investigate the recognition of MAA adducts by human natural antibodies in newborns before or at the time of full-term pregnancy. Plasma samples of pre-term (n = 11) and full-term (n = 36) newborns were enriched in specific IgM binding to MAA adducts compared with the maternal plasma IgM levels. Umbilical cord blood lymphocyte phage display library was generated to clone Fabs that specifically recognized MAA adducts without cross-reactivity to malondialdehyde. Fab clones from the antibody libraries of the pre-term and full-term newborns showed high sequence homology to the germline genes encoding the variable regions of antibodies, confirming that these Fabs represented the natural antibody repertoire of human fetuses. The MAA-specific umbilical cord blood Fabs bound to apoptotic human endothelial cells and the binding was efficiently competed with MAA adducts. The MAA-specific Fabs also recognized epitopes on advanced atherosclerotic lesions, and the uptake of infrared (IR)-labeled MAA-low-density lipoprotein by mouse J774A.1 macrophages was significantly reduced in the presence of these Fabs. In conclusion, MAA adducts were identified as one of the major antigenic targets for human natural antibodies already before the time of birth. MAA-specific natural antibodies are suggested to regulate apoptotic cell clearance starting from fetal development and to participate in the immunomodulation of atherosclerosis development during adulthood.
Free Radical Biology and Medicine | 2011
Marja Veneskoski; S. Pauliina Turunen; Outi Kummu; Antti Nissinen; Sirpa Rannikko; Anna-Liisa Levonen; Sohvi Hörkkö
Oxidatively modified low-density lipoproteins (Ox-LDL) and complement anaphylatoxins C3a and C5a are colocalized in atherosclerotic lesions. Anaphylatoxin C3a also binds and breaks bacterial lipid membranes and phosphatidylcholine liposomes. The role of oxidized lipid adducts in C3a binding to Ox-LDL and apoptotic cells was investigated. Recombinant human C3a bound specifically to low-density lipoprotein and bovine serum albumin modified with malondialdehyde (MDA) and malondialdehyde acetaldehyde (MAA) in chemiluminescence immunoassays. No binding was observed to native proteins, LDL oxidized with copper ions (CuOx-LDL), or phosphocholine. C3a binding to MAA-LDL was inhibited by two monoclonal antibodies specific for MAA-LDL. On agarose gel electrophoresis, C3a comigrated with MDA-LDL and MAA-LDL, but not with native LDL or CuOx-LDL. C3a bound to apoptotic cells in flow cytometry. C3a opsonized MAA-LDL and was taken up by J774A.1 macrophages in immunofluorescence analysis. Complement-activated human serum samples (n=30) showed increased C3a binding to MAA-LDL (P<0.001) and MDA-LDL (P<0.001) compared to nonactivated samples. The amount of C3a bound to MAA-LDL was associated with total complement activity, C3a desArg concentration, and IgG antibody levels to MAA-LDL. Proteins containing MDA adducts or MAA adducts may bind C3a in vivo and contribute to inflammatory processes involving activation of the complement system in atherosclerosis.
Innate Immunity | 2015
S. Pauliina Turunen; Outi Kummu; Chunguang Wang; Kirsi Harila; Riikka K Mattila; Marjo Sahlman; Pirkko J. Pussinen; Sohvi Hörkkö
Periodontal infections increase the risk of atherosclerotic vascular disease via partly unresolved mechanisms. Of the natural IgM Abs that recognize molecular mimicry on bacterial epitopes and modified lipid and protein structures, IgM directed against oxidized low-density lipoprotein (LDL) is associated with atheroprotective properties. Here, the effect of natural immune responses to malondialdehyde-modified LDL (MDA-LDL) in conferring protection against atherosclerosis, which was accelerated by the major periodontopathogen Porphyromonas gingivalis, was investigated. LDL receptor-deficient (LDLR–/–) mice were immunized with mouse MDA-LDL without adjuvant before topical application challenge with live P. gingivalis. Atherosclerosis was analyzed after a high-fat diet, and plasma IgG and IgM Ab levels were measured throughout the study, and the secretion of IL-5, IL-10 and IFN-γ in splenocytes stimulated with MDA-LDL was determined. LDLR–/– mice immunized with MDA-LDL had elevated IgM and IgG levels to MDA-LDL compared with saline-treated controls. MDA-LDL immunization diminished aortic lipid depositions after challenge with P. gingivalis compared with mice receiving only P. gingivalis challenge. Immunization of LDLR–/– mice with homologous MDA-LDL stimulated the production of IL-5, implicating general activation of B-1 cells. Immune responses to MDA-LDL protected from the P. gingivalis-accelerated atherosclerosis. Thus, the linkage between bacterial infectious burden and atherogenesis is suggested to be modulated via natural IgM directed against cross-reactive epitopes on bacteria and modified LDL.
PLOS ONE | 2013
Satu Lehti; Reijo Käkelä; Sohvi Hörkkö; Outi Kummu; Satu Helske-Suihko; Markku Kupari; Kalervo Werkkala; Petri T. Kovanen; Katariina Öörni
In aortic stenosis plasma lipoprotein-derived lipids accumulate in aortic valves. Here, we first compared the lipid compositions of stenotic aortic valves and atherosclerotic plaque cores. Both pathological tissues were found to be enriched in cholesteryl linoleate, a marker of extracellularly accumulated lipoproteins. In addition, a large proportion of the phospholipids were found to contain arachidonic acid, the common precursor of a number of proinflammatory lipid mediators. Next, we isolated and characterized extracellular lipid particles from human stenotic and non-stenotic control valves, and compared them to plasma lipoproteins from the same subjects. The extracellular valvular lipid particles were isolated from 15 stenotic and 14 non-stenotic aortic valves. Significantly more apoB-100-containing lipid particles were found in the stenotic than in the non-stenotic valves. The majority of the lipid particles isolated from the non-stenotic valves had sizes (23±6.2 nm in diameter) similar to those of plasma low density lipoprotein (LDL) (22±1.5 nm), while the lipid particles from stenotic valves were not of uniform size, their sizes ranging from 18 to more than 500 nm. The lipid particles showed signs of oxidative modifications, and when compared to isolated plasma LDL particles, the lipid particles isolated from the stenotic valves had a higher sphingomyelin/phosphatidylcholine –ratio, and also higher contents of lysophosphatidylcholine and unesterified cholesterol. The findings of the present study reveal, for the first time, that in stenotic human aortic valves, infiltrated plasma lipoproteins have undergone oxidative and lipolytic modifications, and become fused and aggregated. The generated large lipid particles may contribute to the pathogenesis of human aortic stenosis.
Antioxidants & Redox Signaling | 2013
Outi Kummu; S. Pauliina Turunen; Chunguang Wang; Jaakko Lehtimäki; Marja Veneskoski; Helena Kastarinen; Marja-Kaisa Koivula; Juha Risteli; Y. Antero Kesäniemi; Sohvi Hörkkö
AIMS Post-translational modification of proteins via carbamylation predicts increased risk for coronary artery disease. Uremia and smoke exposure are known to increase carbamylation. The aim was to investigate the role of carbamylated low-density lipoprotein (LDL) immunization on antibody formation and atherogenesis in LDL receptor-deficient (LDLR-/-) mice, and to study autoantibodies to carbamylated proteins in humans with carbamylative load. RESULTS LDLR-/- mice immunized with carbamylated mouse LDL (msLDL; n=10) without adjuvant showed specific immunoglobulin G (IgG) antibody levels to carbamyl-LDL and malondialdehyde-modified LDL (MDA-LDL) but not to oxidized LDL or native LDL. Immunization did not influence the atherosclerotic plaque area compared with control LDLR-/- mice immunized with native msLDL (n=10) or phosphate-buffered saline (n=11). Humans with high plasma urea levels, as well as smokers, had increased IgG autoantibody levels to carbamyl-modified proteins compared to the subjects with normal plasma urea levels, or to nonsmokers. INNOVATION Carbamyl-LDL induced specific IgG antibody response cross-reactive with MDA-LDL in mice. IgG antibodies to carbamyl-LDL were also found in human plasma and related to conditions known to have increased carbamylation, such as uremia and smoking. Plasma antibodies to carbamylated proteins may serve as new indicator of in vivo carbamylation. CONCLUSION These data give insight into mechanisms of in vivo humoral recognition of post-translationally modified structures. Humoral IgG immune response to carbamylated proteins is suggested to play a role in conditions leading to enhanced carbamylation, such as uremia and smoking.
Immunologic Research | 2016
Chunguang Wang; Jari Kankaanpää; Outi Kummu; Turunen Sp; Ramin Akhi; Bergmann U; Pirkko J. Pussinen; Anne M. Remes; Sohvi Hörkkö
Natural antibodies are predominantly antibodies of the IgM isotype present in the circulation of all vertebrates that have not been previously exposed to exogenous antigens. They are often directed against highly conserved epitopes and bind to ligands of varying chemical composition with low affinity. In this study we cloned and characterized a natural mouse monoclonal IgM antibody selected by binding to malondialdehyde acetaldehyde epitopes on low-density lipoprotein (LDL). Interestingly, the IgM antibody cross-reacted with Aggregatibacter actinomycetemcomitans (Aa) bacteria, a key pathogenic microbe in periodontitis reported to be associated with risk factor for atherosclerosis, thus being named as Aa_Mab. It is more intriguing that the binding molecule of Aa to Aa_Mab IgM was found to be Aa chaperonin 60 or HSP60, a member of heat-shock protein family, behaving not only as a chaperone for correct protein folding but also as a powerful virulence factor of the bacteria for inducing bone resorption and as a putative pathogenic factor in atherosclerosis. The findings will highlight the question of whether molecular mimicry between pathogen components and oxidized LDL could lead to atheroprotective immune activity, and also would be of great importance in potential application of immune response-based preventive and therapeutic strategies against atherosclerosis and periodontal disease.
Immunology | 2014
Outi Kummu; S. Pauliina Turunen; Piotr Prus; Jaakko Lehtimäki; Marja Veneskoski; Chunguang Wang; Sohvi Hörkkö
Oxidized low‐density lipoprotein (OxLDL) plays a crucial role in the development of atherosclerosis. Carbamylated LDL has been suggested to promote atherogenesis in patients with chronic kidney disease. Here we observed that plasma IgG and IgM antibodies to carbamylated epitopes were associated with IgG and IgM antibodies to oxidation‐specific epitopes (ρ = 0·65–0·86, P < 0·001) in healthy adults, suggesting a cross‐reaction between antibodies recognizing carbamyl‐epitopes and malondialdehyde (MDA)/malondialdehyde acetaldehyde (MAA) ‐adducts. We used a phage display technique to clone a human Fab antibody that bound to carbamylated LDL and other carbamylated proteins. Anti‐carbamyl‐Fab (Fab106) cross‐reacted with oxidation‐specific epitopes, especially with MDA‐LDL and MAA‐LDL. We showed that Fab106 bound to apoptotic Jurkat cells known to contain these oxidation‐specific epitopes, and the binding was competed with soluble carbamylated and MDA‐/MAA‐modified LDL and BSA. In addition, Fab106 was able to block the uptake of carbamyl‐LDL and MDA‐LDL by macrophages and stained mouse atherosclerotic lesions. The observed cross‐reaction between carbamylated and MDA‐/MAA‐modified LDL and its contribution to enhanced atherogenesis in uraemic patients require further investigation.
PLOS ONE | 2018
Mikael Kyrklund; Outi Kummu; Jari Kankaanpää; Ramin Akhi; Antti Nissinen; S. Pauliina Turunen; Pirkko J. Pussinen; Chunguang Wang; Sohvi Hörkkö; Cordula M. Stover
Treatment of periodontitis has beneficial effects on systemic inflammation markers that relate to progression of atherosclerosis. We aimed to investigate whether immunization with A hemagglutinin domain (Rgp44) of Porphyromonas gingivalis (Pg), a major etiologic agent of periodontitis, would lead to an antibody response cross-reacting with oxidized low-density lipoprotein (OxLDL) and how it would affect the progression of atherosclerosis in low-density lipoprotein receptor-deficient (LDLR-/-) mice. The data revealed a prominent IgM but not IgG response to malondialdehyde-acetaldehyde modified LDL (MAA-LDL) after Rgp44 and Pg immunizations, implying that Rgp44/Pg and MAA adducts may share cross-reactive epitopes that prompt IgM antibody production and consequently confer atheroprotection. A significant negative association was observed between atherosclerotic lesion and plasma IgA to Rgp44 in Rgp44 immunized mice, supporting further the anti-atherogenic effect of Rgp44 immunization. Plasma IgA levels to Rgp44 and to Pg in both Rgp44- and Pg-immunized mice were significantly higher than those in saline control, suggesting that IgA to Rgp44 could be a surrogate marker of immunization in Pg-immunized mice. Distinct antibody responses in plasma IgA levels to MAA-LDL, to Pg lipopolysaccharides (Pg-LPS), and to phosphocholine (PCho) were observed after Rgp44 and Pg immunizations, indicating that different immunogenic components between Rpg44 and Pg may behave differently in regard of their roles in the development of atherosclerosis. Immunization with Rgp44 also displayed atheroprotective features in modulation of plaque size through association with plasma levels of IL-1α whereas whole Pg bacteria achieved through regulation of anti-inflammatory cytokine levels of IL-5 and IL-10. The present study may contribute to refining therapeutic approaches aiming to modulate immune responses and inflammatory/anti-inflammatory processes in atherosclerosis.