Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ovidiu D. Iancu is active.

Publication


Featured researches published by Ovidiu D. Iancu.


Bioinformatics | 2012

Utilizing RNA-Seq data for de novo coexpression network inference

Ovidiu D. Iancu; Sunita Kawane; Daniel Bottomly; Robert P. Searles; Robert Hitzemann; Shannon McWeeney

MOTIVATION RNA-Seq experiments have shown great potential for transcriptome profiling. While sequencing increases the level of biological detail, integrative data analysis is also important. One avenue is the construction of coexpression networks. Because the capacity of RNA-Seq data for network construction has not been previously evaluated, we constructed a coexpression network using striatal samples, derived its network properties and compared it with microarray-based networks. RESULTS The RNA-Seq coexpression network displayed scale-free, hierarchical network structure. We detected transcripts groups (modules) with correlated profiles; modules overlap distinct ontology categories. Neuroanatomical data from the Allen Brain Atlas reveal several modules with spatial colocalization. The network was compared with microarray-derived networks; correlations from RNA-Seq data were higher, likely because greater sensitivity and dynamic range. Higher correlations result in higher network connectivity, heterogeneity and centrality. For transcripts present across platforms, network structure appeared largely preserved. From this study, we present the first RNA-Seq data de novo network inference.


BMC Genomics | 2010

Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse

Ovidiu D. Iancu; Priscila Darakjian; Nicole A.R. Walter; Barry Malmanger; Denesa Oberbeck; John K. Belknap; Shannon McWeeney; Robert Hitzemann

BackgroundThe current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA).ResultsGenes reliably detected as expressed were similar in all three data sets as was the variability of expression. As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g., central nervous system development. Integration with known protein-protein interactions data indicated significant enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system cell types (neurons, oligodendrocytes and astrocytes). Using the Allen Brain Atlas, we found evidence of spatial co-localization within the striatum for several modules. Finally, for some modules it was possible to detect an enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration, was the most significantly overrepresented.ConclusionsDespite the marked differences in genetic diversity, the transcriptome structure was remarkably similar for the F2, HS4 and HS-CC. These data suggest that it should be possible to integrate network data from simple and complex crosses. A careful examination of the HS-CC transcriptome revealed the expected structure for striatal gene expression. Importantly, we demonstrate the integration of anatomical and network expression data.


Alcoholism: Clinical and Experimental Research | 2013

Selection for drinking in the dark alters brain gene coexpression networks.

Ovidiu D. Iancu; Denesa Oberbeck; Priscila Darakjian; Pamela Metten; Shannon McWeeney; John C. Crabbe; Robert Hitzemann

BACKGROUND Heterogeneous stock (HS/NPT) mice have been used to create lines selectively bred in replicate for elevated drinking in the dark (DID). Both selected lines routinely reach a blood ethanol (EtOH) concentration (BEC) of 1.00 mg/ml or greater at the end of the 4-hour period of access in Day 2. The mechanisms through which genetic differences influence DID are currently unclear. Therefore, the current study examines the transcriptome, the first stage at which genetic variability affects neurobiology. Rather than focusing solely on differential expression (DE), we also examine changes in the ways that gene transcripts collectively interact with each other, as revealed by changes in coexpression patterns. METHODS Naïve mice (N = 48/group) were genotyped using the Mouse Universal Genotyping Array, which provided 3,683 informative markers. Quantitative trait locus (QTL) analysis used a marker-by-marker strategy with the threshold for a significant logarithm of odds (LOD) set at 10.6. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene coexpression network analysis (WGCNA) were implemented largely as described elsewhere. RESULTS Significant QTLs for elevated BECs after DID were detected on chromosomes 4, 14, and 16; the latter 2 were associated with gene-poor regions. None of the QTLs overlapped with known QTLs for EtOH preference drinking. Ninety-four transcripts were detected as being differentially expressed in both selected lines versus HS controls; there was no overlap with known preference genes. The WGCNA revealed 2 modules as showing significant effects of both selections on intramodular connectivity. A number of genes known to be associated with EtOH phenotypes (e.g., Gabrg1, Glra2, Grik1, Npy2r, and Nts) showed significant changes in connectivity. CONCLUSIONS We found marked and consistent effects of selection on coexpression patterns; DE changes were more modest and less concordant. The QTLs and differentially expressed genes detected here are distinct from the preference phenotype. This is consistent with behavioral data and suggests that the DID and preference phenotypes are markedly different genetically.


Genes, Brain and Behavior | 2012

Gene networks and haloperidol‐induced catalepsy

Ovidiu D. Iancu; Priscila Darakjian; Barry Malmanger; N. A. R. Walter; Shannon McWeeney; Robert Hitzemann

The current study examined the changes in striatal gene network structure induced by short‐term selective breeding from a heterogeneous stock for haloperidol response. Brain (striatum) gene expression data were obtained using the Illumina WG 8.2 array, and the datasets from responding and non‐responding selected lines were independently interrogated using a weighted gene coexpression network analysis (WGCNA). We detected several gene modules (groups of coexpressed genes) in each dataset; the membership of the modules was found to be largely concordant, and a consensus network was constructed. Further validation of the network topology showed that using approximately 35 samples is sufficient to reliably infer the transcriptome network. An in‐depth analysis showed significant changes in network structure and gene connectivity associated with the selected lines; these changes were validated using a bootstrapping procedure. The most dramatic changes were associated with a gene module richly annotated with neurobehavioral traits. The changes in network connectivity were concentrated in the links between this module and the rest of the network, in addition to changes within the module; this observation is consistent with recent results in protein and metabolic networks. These results suggest that a network‐based strategy will help identify the genetic factors associated with haloperidol response.


PLOS ONE | 2013

Differential Network Analysis Reveals Genetic Effects on Catalepsy Modules

Ovidiu D. Iancu; Denesa Oberbeck; Priscila Darakjian; Sunita Kawane; Jason Erk; Shannon McWeeney; Robert Hitzemann

We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections.


Frontiers in Genetics | 2015

Cosplicing network analysis of mammalian brain RNA-Seq data utilizing WGCNA and Mantel correlations.

Ovidiu D. Iancu; Alexandre Colville; Denesa Oberbeck; Priscila Darakjian; Shannon McWeeney; Robert Hitzemann

Across species and tissues and especially in the mammalian brain, production of gene isoforms is widespread. While gene expression coordination has been previously described as a scale-free coexpression network, the properties of transcriptome-wide isoform production coordination have been less studied. Here we evaluate the system-level properties of cosplicing in mouse, macaque, and human brain gene expression data using a novel network inference procedure. Genes are represented as vectors/lists of exon counts and distance measures sensitive to exon inclusion rates quantifies differences across samples. For all gene pairs, distance matrices are correlated across samples, resulting in cosplicing or cotranscriptional network matrices. We show that networks including cosplicing information are scale-free and distinct from coexpression. In the networks capturing cosplicing we find a set of novel hubs with unique characteristics distinguishing them from coexpression hubs: heavy representation in neurobiological functional pathways, strong overlap with markers of neurons and neuroglia, long coding lengths, and high number of both exons and annotated transcripts. Further, the cosplicing hubs are enriched in genes associated with autism spectrum disorders. Cosplicing hub homologs across eukaryotes show dramatically increasing intronic lengths but stable coding region lengths. Shared transcription factor binding sites increase coexpression but not cosplicing; the reverse is true for splicing-factor binding sites. Genes with protein-protein interactions have strong coexpression and cosplicing. Additional factors affecting the networks include shared microRNA binding sites, spatial colocalization within the striatum, and sharing a chromosomal folding domain. Cosplicing network patterns remain relatively stable across species.


European Journal of Neuroscience | 2011

Gamma oscillations in the auditory cortex of awake rats

Paulo Vianney-Rodrigues; Ovidiu D. Iancu; John P. Welsh

Numerous reports of human electrophysiology have demonstrated gamma (30–150 Hz) frequency oscillations in the auditory cortex during listening. However, only a small number of studies in non‐human animals have provided evidence for gamma oscillations during listening. In this report, multi‐site recordings from primary auditory cortex (A1) were carried out using a 16‐channel microelectrode array in awake rats as they passively listened to tones. We addressed two fundamental questions: (i) Is passive listening associated with an increase in gamma oscillation in A1? And, if so: (ii) Are A1 gamma oscillations during passive listening coherent within local networks and/or over long distances? All sites within A1 showed a short‐latency burst of activity in the low‐gamma (30–70 Hz) and high‐gamma (90–150 Hz) bands in the local field potential (LFP). Additionally, 53% of sites within A1 also showed longer‐latency bursts of gamma oscillation that occurred episodically for up to 350 ms after tone onset, but these varied both in latency and in occurrence across trials. There was significant coherence in the low‐gamma band between spike activity and the LFP recorded with the same electrode. However, neither LFPs nor the spike activity between sites spaced at least 300 μm apart showed coherent activity in the gamma band. The experiments demonstrated that gamma oscillations are present, but not uniformly expressed, throughout A1 during passive listening and that there is strong local coherence in the spatiotemporal organization of gamma activity.


International Review of Neurobiology | 2014

Introduction to sequencing the brain transcriptome.

Robert Hitzemann; Priscila Darakjian; N. A. R. Walter; Ovidiu D. Iancu; Robert P. Searles; Shannon McWeeney

High-throughput next-generation sequencing is now entering its second decade. However, it was not until 2008 that the first report of sequencing the brain transcriptome appeared (Mortazavi, Williams, Mccue, Schaeffer, & Wold, 2008). These authors compared short-read RNA-Seq data for mouse whole brain with microarray results for the same sample and noted both the advantages and disadvantages of the RNA-Seq approach. While RNA-Seq provided exon level resolution, the majority of the reads were provided by a small proportion of highly expressed genes and the data analysis was exceedingly complex. Over the past 6 years, there have been substantial improvements in both RNA-Seq technology and data analysis. This volume contains 11 chapters that detail various aspects of sequencing the brain transcriptome. Some of the chapters are very methods driven, while others focus on the use of RNA-Seq to study such diverse areas as development, schizophrenia, and drug abuse. This chapter briefly reviews the transition from microarrays to RNA-Seq as the preferred method for analyzing the brain transcriptome. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, and can be used to extract genotype information, e.g., nonsynonymous coding single nucleotide polymorphisms. RNA-Seq embraces the complexity of the brain transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior-disease relationships is substantial.


Genes, Brain and Behavior | 2017

Effects of selection for ethanol preference on gene expression in the nucleus accumbens of HS-CC mice

Alexandre Colville; Ovidiu D. Iancu; Denesa Oberbeck; Priscila Darakjian; Christina L. Zheng; N. A. R. Walter; Christina A. Harrington; Robert P. Searles; Shannon McWeeney; Robert Hitzemann

Previous studies on changes in murine brain gene expression associated with the selection for ethanol preference have used F2 intercross or heterogeneous stock (HS) founders, derived from standard laboratory strains. However, these populations represent only a small proportion of the genetic variance available in Mus musculus. To investigate a wider range of genetic diversity, we selected mice for ethanol preference using an HS derived from the eight strains of the collaborative cross. These HS mice were selectively bred (four generations) for high and low ethanol preference. The nucleus accumbens shell of naive S4 mice was interrogated using RNA sequencing (RNA‐Seq). Gene networks were constructed using the weighted gene coexpression network analysis assessing both coexpression and cosplicing. Selection targeted one of the network coexpression modules (greenyellow) that was significantly enriched in genes associated with receptor signaling activity including Chrna7, Grin2a, Htr2a and Oprd1. Connectivity in the module as measured by changes in the hub nodes was significantly reduced in the low preference line. Of particular interest was the observation that selection had marked effects on a large number of cell adhesion molecules, including cadherins and protocadherins. In addition, the coexpression data showed that selection had marked effects on long non‐coding RNA hub nodes. Analysis of the cosplicing network data showed a significant effect of selection on a large cluster of Ras GTPase‐binding genes including Cdkl5, Cyfip1, Ndrg1, Sod1 and Stxbp5. These data in part support the earlier observation that preference is linked to Ras/Mapk pathways.


Mammalian Genome | 2014

The genetics of gene expression in complex mouse crosses as a tool to study the molecular underpinnings of behavior traits

Robert Hitzemann; Daniel Bottomly; Ovidiu D. Iancu; Kari J. Buck; Beth Wilmot; Michael Mooney; Robert P. Searles; Christina L. Zheng; John K. Belknap; John C. Crabbe; Shannon McWeeney

Complex Mus musculus crosses provide increased resolution to examine the relationships between gene expression and behavior. While the advantages are clear, there are numerous analytical and technological concerns that arise from the increased genetic complexity that must be considered. Each of these issues is discussed, providing an initial framework for complex cross study design and planning.

Collaboration


Dive into the Ovidiu D. Iancu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge