Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ovidiu Ivanciuc is active.

Publication


Featured researches published by Ovidiu Ivanciuc.


Nucleic Acids Research | 2003

SDAP: database and computational tools for allergenic proteins

Ovidiu Ivanciuc; Catherine H. Schein; Werner Braun

SDAP (Structural Database of Allergenic Proteins) is a web server that provides rapid, cross-referenced access to the sequences, structures and IgE epitopes of allergenic proteins. The SDAP core is a series of CGI scripts that process the user queries, interrogate the database, perform various computations related to protein allergenic determinants and prepare the output HTML pages. The database component of SDAP contains information about the allergen name, source, sequence, structure, IgE epitopes and literature references and easy links to the major protein (PDB, SWISS-PROT/TrEMBL, PIR-ALN, NCBI Taxonomy Browser) and literature (PubMed, MEDLINE) on-line servers. The computational component in SDAP uses an original algorithm based on conserved properties of amino acid side chains to identify regions of known allergens similar to user-supplied peptides or selected from the SDAP database of IgE epitopes. This and other bioinformatics tools can be used to rapidly determine potential cross-reactivities between allergens and to screen novel proteins for the presence of IgE epitopes they may share with known allergens. SDAP is available via the World Wide Web at http://fermi.utmb.edu/SDAP/.


Molecular Diversity | 2006

Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR).

Teodora Ivanciuc; Ovidiu Ivanciuc; Douglas J. Klein

SummaryDuring bioconcentration, chemical pollutants from water are absorbed by aquatic animals via the skin or a respiratory surface, while the entry routes of chemicals during bioaccumulation are both directly from the environment (skin or a respiratory surface) and indirectly from food. The bioconcentration factor (BCF) and the bioaccumulation factor (BAF) for a particular chemical compound are defined as the ratio of the concentration of a chemical inside an organism to the concentration in the surrounding environment. Because the experimental determination of BAF and BCF is time-consuming and expensive, it is efficacious to develop models to provide reliable activity predictions for a large number of chemical compounds. Polychlorinated biphenyls (PCBs) released from industrial activities are persistent pollutants of the environment that produce widespread contamination of water and soil. PCBs can bioaccumulate in the food chain, constituting a potential source of exposure for the general population. To predict the bioconcentration and bioaccumulation factors for PCBs we make use of the biphenyl substitution-reaction network for the sequential substitution of H-atoms by Cl-atoms. Each PCB structure then occurs as a node of this reaction network, which is some sort of super-structure, turning out mathematically to be a partially ordered set (poset). Rather than dealing with the molecular structure via ordinary QSAR we use only this poset, making different quantitative super-structure/activity relationships (QSSAR). Thence we developed cluster expansion and splinoid QSSARs for PCB bioconcentration and bioaccumulation factors. The predictive ability of the BAF and BCF models generated for 20 data sets (representing different conditions and fish species) was evaluated with the leave-one-out cross-validation, which shows that the splinoid QSSAR (r between 0.903 and 0.935) are better than models computed with the cluster expansion (r between 0.745 and 0.887). The splinoid QSSAR models for BAF and BCF yield predictions for the missing PCBs in the investigated data sets.


Bioinformatics | 2002

Data mining of sequences and 3D structures of allergenic proteins.

Ovidiu Ivanciuc; Catherine H. Schein; Werner Braun

MOTIVATION Many sequences, and in some cases structures, of proteins that induce an allergic response in atopic individuals have been determined in recent years. This data indicates that allergens, regardless of source, fall into discreet protein families. Similarities in the sequence may explain clinically observed cross-reactivities between different biological triggers. However, previously available allergy databases group allergens according to their biological sources, or observed clinical cross-reactivities, without providing data about the proteins. A computer-aided data mining system is needed to compare the sequential and structural details of known allergens. This information will aid in predicting allergenic cross-responses and eventually in determining possible common characteristics of IgE recognition. RESULTS The new web-based Structural Database of Allergenic Proteins (SDAP) permits the user to quickly compare the sequence and structure of allergenic proteins. Data from literature sources and previously existing lists of allergens are combined in a MySQL interactive database with a wide selection of bioinformatics applications. SDAP can be used to rapidly determine the relationship between allergens and to screen novel proteins for the presence of IgE or T-cell epitopes they may share with known allergens. Further, our novel similarity search method, based on five dimensional descriptors of amino acid properties, can be used to scan the SDAP entries with a peptide sequence. For example, when a known IgE binding epitope from shrimp tropomyosin was used as a query, the method rapidly identified a similar sequence in known shellfish and insect allergens. This prediction of cross-reactivity between allergens is consistent with clinical observations. AVAILABILITY SDAP is available on the web at http://fermi.utmb.edu/SDAP/index.html


Molecular Immunology | 2009

Characteristic motifs for families of allergenic proteins.

Ovidiu Ivanciuc; Tzintzuni Garcia; Miguel Torres; Catherine H. Schein; Werner Braun

The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver MotifMate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins.


Current Medicinal Chemistry | 2004

Using property based sequence motifs and 3D modeling to determine structure and functional regions of proteins.

Ovidiu Ivanciuc; Numan Oezguen; Venkatarajan S. Mathura; Catherine H. Schein; Yuan Xu; Werner Braun

Homology modeling has become an essential tool for studying proteins that are targets for medical drug design. This paper describes the approach we developed that combines sequence decomposition techniques with distance geometry algorithms for homology modeling to determine functionally important regions of proteins. We show here the application of these techniques to targets of medical interest chosen from those included in the CASP5 (Critical Assessment of Techniques for Protein Structure Prediction) competition, including the dihydroneopterin aldolase from Mycobacterium tuberculosis, RNase III of Thermobacteria maritima, and the NO-transporter nitrophorin from saliva of the bedbug Cimex lectularius. Physical chemical property (PCP) motifs, identified in aligned sequences with our MASIA program, can be used to select among different alignments returned by fold recognition servers. They can also be used to suggest functions for hypothetical proteins, as we illustrate for target T188. Once a suitable alignment has been made with the template, our modeling suite MPACK generates a series of possible models. The models can then be selected according to their match in areas known to be conserved in protein families. Alignments based on motifs can improve the structural matching of residues in the active site. The quality of the local structure of our 3D models near active sites or epitopes makes them useful aids for drug and vaccine design. Further, the PCP motif approach, when combined with a structural filter, can be a potent way to detect areas involved in activity and to suggest function for novel genome sequences.


Journal of Mathematical Chemistry | 2001

Graph Cyclicity, Excess Conductance, and Resistance Deficit

Douglas J. Klein; Ovidiu Ivanciuc

A new graph-theoretic cyclicity index C(G) is defined, being motivated in terms of mathematical concepts from the theory of electrical networks. This “global bond excess conductance” index C(G) then is investigated, with a number of theorems as well as some discussion and numerical investigation. It is found that C(G) typically has less degeneracy than the standard cyclomatic number and has some intuitively appealing features.


Regulatory Toxicology and Pharmacology | 2009

Structural analysis of linear and conformational epitopes of allergens.

Ovidiu Ivanciuc; Catherine H. Schein; Tzintzuni Garcia; Numan Oezguen; Surendra S. Negi; Werner Braun

In many countries regulatory agencies have adopted safety guidelines, based on bioinformatics rules from the WHO/FAO and EFSA recommendations, to prevent potentially allergenic novel foods or agricultural products from reaching consumers. We created the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to combine data that had previously been available only as flat files on Web pages or in the literature. SDAP was designed to be user friendly, to be of maximum use to regulatory agencies, clinicians, as well as to scientists interested in assessing the potential allergenic risk of a protein. We developed methods, unique to SDAP, to compare the physicochemical properties of discrete areas of allergenic proteins to known IgE epitopes. We developed a new similarity measure, the property distance (PD) value that can be used to detect related segments in allergens with clinical observed cross-reactivity. We have now expanded this work to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to known IgE epitopes. In complementary work we show how sequence motifs characteristic of allergenic proteins in protein families can be used as fingerprints for allergenicity.


Molecular Immunology | 2009

The property distance index PD predicts peptides that cross-react with IgE antibodies

Ovidiu Ivanciuc; Terumi Midoro-Horiuti; Catherine H. Schein; Liping Xie; Gilbert R. Hillman; Randall M. Goldblum; Werner Braun

Similarities in the sequence and structure of allergens can explain clinically observed cross-reactivities. Distinguishing sequences that bind IgE in patient sera can be used to identify potentially allergenic protein sequences and aid in the design of hypo-allergenic proteins. The property distance index PD, incorporated in our Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/), may identify potentially cross-reactive segments of proteins, based on their similarity to known IgE epitopes. We sought to obtain experimental validation of the PD index as a quantitative predictor of IgE cross-reactivity, by designing peptide variants with predetermined PD scores relative to three linear IgE epitopes of Jun a 1, the dominant allergen from mountain cedar pollen. For each of the three epitopes, 60 peptides were designed with increasing PD values (decreasing physicochemical similarity) to the starting sequence. The peptides synthesized on a derivatized cellulose membrane were probed with sera from patients who were allergic to Jun a 1, and the experimental data were interpreted with a PD classification method. Peptides with low PD values relative to a given epitope were more likely to bind IgE from the sera than were those with PD values larger than 6. Control sequences, with PD values between 18 and 20 to all the three epitopes, did not bind patient IgE, thus validating our procedure for identifying negative control peptides. The PD index is a statistically validated method to detect discrete regions of proteins that have a high probability of cross-reacting with IgE from allergic patients.


Bioinformatics and Biology Insights | 2010

An Allergen Portrait Gallery: Representative Structures and an Overview of IgE Binding Surfaces

Catherine H. Schein; Ovidiu Ivanciuc; Terumi Midoro-Horiuti; Randall M. Goldblum; Werner Braun

Recent progress in the biochemical classification and structural determination of allergens and allergen–antibody complexes has enhanced our understanding of the molecular determinants of allergenicity. Databases of allergens and their epitopes have facilitated the clustering of allergens according to their sequences and, more recently, their structures. Groups of similar sequences are identified for allergenic proteins from diverse sources, and all allergens are classified into a limited number of protein structural families. A gallery of experimental structures selected from the protein classes with the largest number of allergens demonstrate the structural diversity of the allergen universe. Further comparison of these structures and identification of areas that are different from innocuous proteins within the same protein family can be used to identify features specific to known allergens. Experimental and computational results related to the determination of IgE binding surfaces and methods to define allergen-specific motifs are highlighted.


Proteins | 2013

Assessment of 3D models for allergen research

Trevor D. Power; Ovidiu Ivanciuc; Catherine H. Schein; Werner Braun

Allergenic proteins must crosslink specific IgE molecules, bound to the surface of mast cells and basophils, to stimulate an immune response. A structural understanding of the allergen–IgE interface is needed to predict cross‐reactivities between allergens and to design hypoallergenic proteins. However, there are less than 90 experimentally determined structures available for the approximately 1500 sequences of allergens and isoallergens cataloged in the Structural Database of Allergenic Proteins. To provide reliable structural data for the remaining proteins, we previously produced more than 500 3D models using an automated procedure, with strict controls on template choice and model quality evaluation. Here, we assessed how well the fold and residue surface exposure of 10 of these models correlated with recently published experimental 3D structures determined by X‐ray crystallography or NMR. We also discuss the impact of intrinsically disordered regions on the structural comparison and epitope prediction. Overall, for seven allergens with sequence identities to the original templates higher than 27%, the backbone root‐mean square deviations were less than 2 Å between the models and the subsequently determined experimental structures for the ordered regions. Further, the surface exposure of the known IgE epitopes on the models of three major allergens, from peanut (Ara h 1), latex (Hev b 2), and soy (Gly m 4), was very similar to the experimentally determined structures. For the three remaining allergens with lower sequence identities to the modeling templates, the 3D folds were correctly identified. However, the accuracy of those models is not sufficient for a reliable epitope mapping.

Collaboration


Dive into the Ovidiu Ivanciuc's collaboration.

Top Co-Authors

Avatar

Werner Braun

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Catherine H. Schein

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Douglas J. Klein

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Numan Oezguen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Randall M. Goldblum

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Terumi Midoro-Horiuti

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Surendra S. Negi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Trevor D. Power

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge