Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Owain W. Howell is active.

Publication


Featured researches published by Owain W. Howell.


Nature Neuroscience | 2000

Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype.

Ruth M. McKernan; Thomas W. Rosahl; David S. Reynolds; Cyrille Sur; Keith A. Wafford; John R. Atack; S. Farrar; J. Myers; G. Cook; P. Ferris; L. Garrett; Linda J. Bristow; G. Marshall; Alison Macaulay; N. Brown; Owain W. Howell; K. W. Moore; R. W. Carling; Leslie J. Street; José L. Castro; C. I. Ragan; Gerard R. Dawson; Paul J. Whiting

Inhibitory neurotransmission in the brain is largely mediated by GABAA receptors. Potentiation of GABA receptor activation through an allosteric benzodiazepine (BZ) site produces the sedative, anxiolytic, muscle relaxant, anticonvulsant and cognition-impairing effects of clinically used BZs such as diazepam. We created genetically modified mice (α1 H101R) with a diazepam-insensitive α1 subtype and a selective BZ site ligand, L-838,417, to explore GABAA receptor subtypes mediating specific physiological effects. These two complimentary approaches revealed that the α1 subtype mediated the sedative, but not the anxiolytic effects of benzodiazepines. This finding suggests ways to improve anxiolytics and to develop drugs for other neurological disorders based on their specificity for GABAA receptor subtypes in distinct neuronal circuits.


Brain | 2011

Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis

Owain W. Howell; Cheryl Reeves; Richard Nicholas; Daniele Carassiti; Bishan Radotra; Steve M. Gentleman; Barbara Serafini; Federico Roncaroli; Roberta Magliozzi; Richard Reynolds

Meningeal inflammation in the form of ectopic lymphoid-like structures has been suggested to play a prominent role in the development of cerebral cortical grey matter pathology in multiple sclerosis. The aim of this study was to analyse the incidence and distribution of B cell follicle-like structures in an extensive collection of cases with secondary progressive multiple sclerosis with a wide age range and to determine their relationship to diffuse meningeal inflammation, white matter perivascular infiltrates and microglial activation. One hundred and twenty three cases with secondary progressive multiple sclerosis were examined for the presence of meningeal and perivascular immune cell infiltrates in tissue blocks and/or whole coronal macrosections encompassing a wide array of brain areas. Large, dense, B cell-rich lymphocytic aggregates were screened for the presence of follicular dendritic cells, proliferating B cells and plasma cells. Ectopic B cell follicle-like structures were found, with variable frequency, in 49 cases (40%) and were distributed throughout the forebrain, where they were most frequently located in the deep sulci of the temporal, cingulate, insula and frontal cortex. Subpial grey matter demyelinated lesions were located both adjacent to, and some distance from such structures. The presence of B cell follicle-like structures was associated with an accompanying quantitative increase in diffuse meningeal inflammation that correlated with the degree of microglial activation and grey matter cortical demyelination. The median age of disease onset, time to disease progression, time to wheelchair dependence and age at death all differed significantly in these cases when compared with those without B cell follicle-like structures. Our findings suggest that meningeal infiltrates may play a contributory role in the underlying subpial grey matter pathology and accelerated clinical course, which is exacerbated in a significant proportion of cases by the presence of B cell follicle-like structures.


Annals of Neurology | 2010

A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis

Roberta Magliozzi; Owain W. Howell; Cheryl Reeves; Federico Roncaroli; Richard Nicholas; Barbara Serafini; Richard Reynolds

Prominent inflammation with formation of ectopic B‐cell follicle‐like structures in the meninges in secondary progressive multiple sclerosis (MS) (SPMS) is associated with extensive cortical pathology and an exacerbated disease course. Our objective was to evaluate the cellular substrates of the cortical damage to understand the role of meningeal inflammation in MS pathology.


Brain | 2012

Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis

Sung R. Choi; Owain W. Howell; Daniele Carassiti; Roberta Magliozzi; Djordje Gveric; Paolo A. Muraro; Richard Nicholas; Federico Roncaroli; Richard Reynolds

The primary progressive form of multiple sclerosis is characterized by accrual of neurological dysfunction from disease onset without remission and it is still a matter of debate whether this disease course results from different pathogenetic mechanisms compared with secondary progressive multiple sclerosis. Inflammation in the leptomeninges has been identified as a key feature of secondary progressive multiple sclerosis and may contribute to the extensive cortical pathology that accompanies progressive disease. Our aim was to investigate the extent of perivascular and meningeal inflammation in primary progressive multiple sclerosis in order to understand their contribution to the pathogenetic mechanisms associated with cortical pathology. A comprehensive immunohistochemical analysis was performed on post-mortem brain tissue from 26 cases with primary progressive multiple sclerosis. A variable extent of meningeal immune cell infiltration was detected and more extensive demyelination and neurite loss in the cortical grey matter was found in cases exhibiting an increased level of meningeal inflammation. However, no tertiary lymphoid-like structures were found. Profound microglial activation and reduction in neuronal density was observed in both the lesions and normal appearing grey matter compared with control cortex. Furthermore, cases with primary progressive multiple sclerosis with extensive meningeal immune cell infiltration exhibited a more severe clinical course, including a shorter disease duration and younger age at death. Our data suggest that generalized diffuse meningeal inflammation and the associated inflammatory milieu in the subarachnoid compartment plays a role in the pathogenesis of cortical grey matter lesions and an increased rate of clinical progression in primary progressive multiple sclerosis.


Nature Neuroscience | 2010

HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage

Jin Young Kim; Siming Shen; Karen Dietz; Ye He; Owain W. Howell; Richard Reynolds; Patrizia Casaccia

Histone deacetylase 1 (HDAC1) is a nuclear enzyme involved in transcriptional repression. We detected cytosolic HDAC1 in damaged axons in brains of humans with multiple sclerosis and of mice with cuprizone-induced demyelination, in ex vivo models of demyelination and in cultured neurons exposed to glutamate and tumor necrosis factor-α. Nuclear export of HDAC1 was mediated by the interaction with the nuclear receptor CRM-1 and led to impaired mitochondrial transport. The formation of complexes between exported HDAC1 and members of the kinesin family of motor proteins hindered the interaction with cargo molecules, thereby inhibiting mitochondrial movement and inducing localized beading. This effect was prevented by inhibiting HDAC1 nuclear export with leptomycin B, treating neurons with pharmacological inhibitors of HDAC activity or silencing HDAC1 but not other HDAC isoforms. Together these data identify nuclear export of HDAC1 as a critical event for impaired mitochondrial transport in damaged neurons.


Journal of Neuropathology and Experimental Neurology | 2010

Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis.

Owain W. Howell; Jon Rundle; Anurag Garg; Masayuki Komada; Peter J. Brophy; Richard Reynolds

The complex manifestations of chronic multiple sclerosis (MS)are due in part to widespread axonal abnormalities that affect lesional and nonlesional areas in the central nervous system. Wedescribe an association between microglial activation and axon/oligodendrocyte pathology at nodal and paranodal domains in normal-appearing white matter (NAWM) of MS cases and in experimental autoimmune encephalomyelitis (EAE). The extent ofparanodal axoglial (neurofascin-155+/Caspr1+) disruption correlated with local microglial inflammation and axonal injury (expression of nonphosphorylated neurofilaments) in MS NAWM. These changes were independent of demyelinating lesions and did not correlate with the density of infiltrating lymphocytes. Similar axoglial alterations were seen in the subcortical white matter of Parkinson disease cases and in preclinical EAE, at a time point when there is microglial activation before the infiltration of immune cells. Disruption of the axoglial unit in adjuvant-immunized animals was reversible and coincided with the resolution of microglial inflammation; paranodal damage and microglial inflammation persisted in chronic EAE. Axoglial integrity could be preserved by the administration of minocycline, which inhibited microglial activation, in actively immunized animals. These data indicate that, in MS NAWM, permanent disruption to axoglial domains in an environment of microglial inflammation is an early indicator of axonal injury that likely affects nerve conduction and may contribute to physiologic dysfunction.


Journal of Cerebral Blood Flow and Metabolism | 2010

Two Binding Sites for [3H]PBR28 in Human Brain: Implications for TSPO PET Imaging of Neuroinflammation

David R. Owen; Owain W. Howell; Sac-Pham Tang; Lisa Wells; Idriss Bennacef; Mats Bergström; Roger N. Gunn; Eugenii A. Rabiner; Martin R. Wilkins; Richard Reynolds; Paul M. Matthews; Christine A. Parker

[11C]PBR28, a radioligand targeting the translocator protein (TSPO), does not produce a specific binding signal in approximately 14% of healthy volunteers. This phenomenon has not been reported for [11C]PK11195, another TSPO radioligand. We measured the specific binding signals with [3H]PK11195 and [3H]PBR28 in brain tissue from 22 donors. Overall, 23% of the samples did not generate a visually detectable specific autoradiographic signal with [3H]PBR28, although all samples showed [3H]PK11195 binding. There was a marked reduction in the affinity of [3H]PBR28 for TSPO in samples with no visible [3H]PBR28 autoradiographic signal (K i =188±15.6 nmol/L), relative to those showing normal signal (K i =3.4±0.5 nmol/L, P<0.001). Of this latter group, [3H]PBR28 bound with a two-site fit in 40% of cases, with affinities (K i ) of 4.0±2.4 nmol/L (high-affinity site) and 313±77 nmol/L (low-affinity site). There was no difference in Kd or Bmax for [3H]PK11195 in samples showing no [3H]PBR28 autoradiographic signal relative to those showing normal [3H]PBR28 autoradiographic signal. [3H]PK11195 bound with a single site for all samples. The existence of three different binding patterns with PBR28 (high-affinity binding (46%), low-affinity binding (23%), and two-site binding (31%)) suggests that a reduction in [11C]PBR28 binding may not be interpreted simply as a reduction in TSPO density. The functional significance of differences in binding characteristics warrants further investigation.


Brain Research | 1999

Autoradiographic localization of α5 subunit-containing GABAA receptors in rat brain

Cyrille Sur; Luigia Grazia Fresu; Owain W. Howell; Ruth M. McKernan; John R. Atack

Abstract Multiple subtypes of GABAA receptors are expressed in the rat central nervous system (CNS). To determine the distribution and proportion of α5 subunit containing receptors, quantitative autoradiographic analyses were performed with both [ 3 H ] L-655,708 and [ 3 H ] Ro15-1788, an α5 selective and a non selective benzodiazepine binding site ligand, respectively. High densities of [ 3 H ] L-655,708 binding sites were observed in hippocampus and olfactory bulb, where α5 receptors accounted for 20–35% of total [ 3 H ] Ro15-1788 binding sites. Low levels of [ 3 H ] L-655,708 sites were associated with the cortex as well as amygdala, thalamic, hypothalamic and midbrain nuclei. These observations indicate that although [ 3 H ] L-655,708 binding sites have an overall low expression in rat CNS, they may contribute significantly to GABAergic inhibition in specific brain regions.


Acta Neuropathologica | 2011

The neuropathological basis of clinical progression in multiple sclerosis

Richard Reynolds; Federico Roncaroli; Richard Nicholas; Bishan Radotra; Djordje Gveric; Owain W. Howell

Multiple sclerosis is the major inflammatory condition affecting the central nervous system (CNS) and is characterised by disseminated focal immune-mediated demyelination. Demyelination is accompanied by variable axonal damage and loss and reactive gliosis. It is this pathology that is thought to be responsible for the clinical relapses that often respond well to immunomodulatory therapy. However, the later secondary progressive stage of MS remains largely refractory to treatment and it is widely suggested that accumulating axon loss is responsible for clinical progression. Although initially thought to be a white matter (WM) disease, it is increasingly apparent that extensive pathology is also seen in the grey matter (GM) throughout the CNS. GM pathology is characterised by demyelination in the relative absence of an immune cell infiltrate. Neuronal loss is also seen both in the GM lesions and in unaffected areas of the GM. The slow progressive nature of this later stage combined with the presence of extensive grey matter pathology has led to the suggestion that neurodegeneration might play an increasing role with increasing disease duration. However, there is a paucity of studies that have correlated the pathological features with clinical milestones during secondary progressive MS. Here, we review the contributions that the various types of pathology are likely to make to the increasing neurological deficit in MS.


Brain | 2011

Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis

Laura Lovato; Simon N. Willis; Scott J. Rodig; Tyler Caron; Stefany Almendinger; Owain W. Howell; Richard Reynolds; Kevin C. O’Connor; David A. Hafler

In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.

Collaboration


Dive into the Owain W. Howell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge