Owen B. McManus
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Owen B. McManus.
Neuron | 1995
Owen B. McManus; Lisa M.H Helms; Leo Pallanck; Barry Ganetzky; Richard Swanson; Reid J. Leonard
Abstract Mammalian high conductance, calcium-activated potassium (maxi-K) channels are composed of two dissimilar subunits, α and β. We have examined the functional contribution of the β subunit to the properties of maxi-K channels expressed heterologously in Xenopus oocytes. Channels from oocytes injected with cRNAs encoding both a and β subunits were much more sensitive to activation by voltage and calcium than channels composed of the α subunit alone, while expression levels, single-channel conductance, and ionic selectivity appeared unaffected. Channels from oocytes expressing both subunits were sensitive to DHS-I, a potent agonist of native maxi-K channels, whereas channels composed of the α subunit alone were insensitive. Thus, α and β subunits together contribute to the functional properties of expressed maxi-K channels. Regulation of coassembly might contribute to the functional diversity noted among members of this family of potassium channels.
Journal of Bioenergetics and Biomembranes | 1996
Gregory J. Kaczorowski; Hans-Günther Knaus; Reid J. Leonard; Owen B. McManus; Maria L. Garcia
High-conductance calcium-activated potassium (maxi-K) channels comprise a specialized family of K+ channels. They are unique in their dual requirement for depolarization and Ca2+ binding for transition to the open, or conducting, state. Ion conduction through maxi-K channels is blocked by a family of venom-derived peptides, such as charybdotoxin and iberiotoxin. These peptides have been used to study function and structure of maxi-K channels, to identify novel channel modulators, and to follow the purification of functional maxi-K channels from smooth muscle. The channel consists of two dissimilar subunits, α and Β. The α subunit is a member of theslo Ca2+-activated K+ channel gene family and forms the ion conduction pore. The Β subunit is a structurally unique, membrane-spanning protein that contributes to channel gating and pharmacology. Potent, selective maxi-K channel effectors (both agonists and blockers) of low molecular weight have been identified from natural product sources. These agents, together with peptidyl inhibitors and site-directed antibodies raised against α and Β subunit sequences, can be used to anatomically map maxi-K channel expression, and to study the physiologic role of maxi-K channels in various tissues. One goal of such investigations is to determine whether maxi-K channels represent novel therapeutic targets.
Journal of Bioenergetics and Biomembranes | 1991
Owen B. McManus
A wide variety of calcium-activated K channels has been described and can be conveniently separated into three classes based on differences in single-channel conductance, voltage dependence of channel opening, and sensitivity to blockers. Large-conductance calcium-activated K channels typically require micromolar concentrations of calcium to open, and their sensitivity to calcium increases with membrane depolarization, suggesting that they may be involved in repolarization events. Small-conductance calcium-activated K channels are generally more sensitive to calcium at negative membrane potentials, but their sensitivity to calcium is independent of membrane potential, suggesting that they may be involved in regulating membrane properties near the resting potential. Intermediate-conductance calcium-activated K channels are a loosely defined group, where membership is determined because a channel does not fit in either of the other two groups. Within each broad group, variations in calcium sensitivity and single-channel conductance have been observed, suggesting that there may be families of closely related calcium-activated K channels. Kinetic studies of the gating of calcium-activated potassium channels have revealed some basic features of the mechanisms involved in activation of these channels by calcium, including the number of calcium ions participating in channel opening, the number of major conformations of the channels involved in the gating process, and the number of transition pathways between open and closed states. Methods of analysis have been developed that may allow identification of models that give accurate descriptions of the gating of these channels. Although such kinetic models are likely to be oversimplifications of the behavior of a large macromolecule, these models may provide some insight into the mechanisms that control the gating of the channel, and are subject to falsification by new data.
The Journal of General Physiology | 2008
Gregory J. Kaczorowski; Owen B. McManus; Birgit T. Priest; Maria L. Garcia
Ion channels are well recognized as important therapeutic targets for treating a number of different pathophysiologies. Historically, however, development of drugs targeting this protein class has been difficult. Several challenges associated with molecular-based drug discovery include validation of new channel targets and identification of acceptable medicinal chemistry leads. Proof of concept approaches, focusing on combined molecular biological/pharmacological studies, have been successful. New, functional, high throughput screening (HTS) strategies developed to identify tractable lead structures, which typically are not abundant in small molecule libraries, have also yielded promising results. Automated cell-based HTS assays can be configured for many different types of ion channels using fluorescence methods to monitor either changes in membrane potential or intracellular calcium with high density format plate readers. New automated patch clamp technologies provide secondary screens to confirm the activity of hits at the channel level, to determine selectivity across ion channel superfamilies, and to provide insight into mechanism of action. The same primary and secondary assays effectively support medicinal chemistry lead development. Together, these methodologies, along with classical drug development practices, provide an opportunity to discover and optimize the activity of ion channel drug development candidates. A case study with voltage-gated sodium channels is presented to illustrate these principles.
Journal of Pharmacology and Experimental Therapeutics | 2010
Catherine Abbadie; Owen B. McManus; Shu-Yu Sun; Randal M. Bugianesi; Ge Dai; Rodolfo J. Haedo; James B Herrington; Gregory J. Kaczorowski; McHardy M. Smith; Andrew M. Swensen; Vivien A. Warren; Brande S. Williams; Stephen P. Arneric; Cyrus Eduljee; Terrance P. Snutch; Elizabeth W. Tringham; Nina Jochnowitz; Annie Liang; D. Euan MacIntyre; Erin McGowan; Shruti Mistry; Valerie V. White; Scott B. Hoyt; Clare London; Kathryn A. Lyons; Patricia B. Bunting; Sylvia Volksdorf; Joseph L. Duffy
Voltage-gated calcium channel (Cav)2.2 (N-type calcium channels) are key components in nociceptive transmission pathways. Ziconotide, a state-independent peptide inhibitor of Cav2.2 channels, is efficacious in treating refractory pain but exhibits a narrow therapeutic window and must be administered intrathecally. We have discovered an N-triazole oxindole, (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1), as a small-molecule, state-dependent blocker of Cav2 channels, and we investigated the therapeutic advantages of this compound for analgesia. TROX-1 preferentially inhibited potassium-triggered calcium influx through recombinant Cav2.2 channels under depolarized conditions (IC50 = 0.27 μM) compared with hyperpolarized conditions (IC50 > 20 μM). In rat dorsal root ganglion (DRG) neurons, TROX-1 inhibited ω-conotoxin GVIA-sensitive calcium currents (Cav2.2 channel currents), with greater potency under depolarized conditions (IC50 = 0.4 μM) than under hyperpolarized conditions (IC50 = 2.6 μM), indicating state-dependent Cav2.2 channel block of native as well as recombinant channels. TROX-1 fully blocked calcium influx mediated by a mixture of Cav2 channels in calcium imaging experiments in rat DRG neurons, indicating additional block of all Cav2 family channels. TROX-1 reversed inflammatory-induced hyperalgesia with maximal effects equivalent to nonsteroidal anti-inflammatory drugs, and it reversed nerve injury-induced allodynia to the same extent as pregabalin and duloxetine. In contrast, no significant reversal of hyperalgesia was observed in Cav2.2 gene-deleted mice. Mild impairment of motor function in the Rotarod test and cardiovascular functions were observed at 20- to 40-fold higher plasma concentrations than required for analgesic activities. TROX-1 demonstrates that an orally available state-dependent Cav2 channel blocker may achieve a therapeutic window suitable for the treatment of chronic pain.
Assay and Drug Development Technologies | 2008
Ge Dai; Rodolfo J. Haedo; Vivien A. Warren; Kevin S. Ratliff; Randal M. Bugianesi; Alison Rush; Mark E. Williams; James B Herrington; McHardy M. Smith; Owen B. McManus; Andrew M. Swensen
Cav2.2 channels play a critical role in pain signaling by controlling synaptic transmission between dorsal root ganglion neurons and dorsal horn neurons. The Cav2.2-selective peptide blocker ziconotide (Prialt, Elan Pharmaceuticals, Dublin, Ireland) has proven efficacious in pain relief, but has a poor therapeutic index and requires intrathecal administration. This has provided impetus for finding an orally active, state-dependent Cav2.2 inhibitor with an improved safety profile. Members of the Cav2 subfamily of calcium channels are the main contributors to central and peripheral synaptic transmission, but the pharmacological effects of blocking each subtype is not yet defined. Here we describe a high-throughput fluorescent assay using a fluorometric imaging plate reader (FLIPR [Molecular Devices, Sunnyvale, CA]) designed to quickly evaluate the state dependence and selectivity of inhibitors across the Cav2 subfamily. Stable cell lines expressing functional Cav2 channels (Ca(V)alpha, beta(3), and alpha(2)delta subunits) were co-transfected with an inward rectifier (Kir2.3) so that membrane potential, and therefore channel state, could be controlled by external potassium concentration. Following cell incubation in drug with varying concentrations of potassium, a high potassium trigger was added to elicit calcium influx through available, unblocked channels. State-dependent inhibitors that preferentially bind to channels in the open or inactivated state can be identified by their increased potency at higher potassium concentrations, where cells are depolarized and channels are biased towards these states. Although the Cav2 channel subtypes differ in their voltage dependence of inactivation, by adjusting pre-trigger potassium concentrations, the degree of steady-state inactivation can be more closely matched across Cav2 subtypes to assess molecular selectivity.
Cell Biochemistry and Biophysics | 2009
Victor N. Uebele; Cindy E. Nuss; Steven V. Fox; Susan L. Garson; Razvan Cristescu; Scott M. Doran; Richard L. Kraus; Vincent P. Santarelli; Yuxing Li; Æ James C. Barrow; Zhi-Qiang Yang; Kelly-Ann S. Schlegel; Kenneth E. Rittle; Thomas S. Reger; Rodney A. Bednar; Wei Lemaire; Faith A. Mullen; Jeanine Ballard; Cuyue Tang; Ge Dai; Owen B. McManus; Kenneth S. Koblan; John J. Renger
Low-voltage-activated (T-type) calcium channels play a role in diverse physiological responses including neuronal burst firing, hormone secretion, and cell growth. To better understand the biological role and therapeutic potential of the target, a number of structurally diverse antagonists have been identified. Multiple drug interaction sites have been identified for L-type calcium channels, suggesting a similar possibility exists for the structurally related T-type channels. Here, we radiolabel a novel amide T-type calcium channel antagonist (TTA-A1) and show that several known antagonists, including mibefradil, flunarizine, and pimozide, displace binding in a concentration-dependent manner. Further, we identify a novel quinazolinone T-type antagonist (TTA-Q4) that enhanced amide radioligand binding, increased affinity in a saturable manner and slowed dissociation. Functional evaluation showed these compounds to be state-dependent antagonists which show a positive allosteric interaction. Consistent with slowing dissociation, the duration of efficacy was prolonged when compounds were co-administered to WAG/Rij rats, a genetic model of absence epilepsy. The development of a T-type calcium channel radioligand has been used to demonstrate structurally distinct TTAs interact at allosteric sites and to confirm the potential for synergistic inhibition of T-type calcium channels with structurally diverse antagonists.
Molecular Pharmacology | 2012
Andrew M. Swensen; James B Herrington; Randal M. Bugianesi; Ge Dai; Rodolfo J. Haedo; Kevin S. Ratliff; McHardy M. Smith; Vivien A. Warren; Stephen P. Arneric; Cyrus Eduljee; David Parker; Terrance P. Snutch; Scott B. Hoyt; Clare London; Joseph L. Duffy; Gregory J. Kaczorowski; Owen B. McManus
Biological, genetic, and clinical evidence provide validation for N-type calcium channels (CaV2.2) as therapeutic targets for chronic pain. A state-dependent CaV2.2 inhibitor may provide an improved therapeutic window over ziconotide, the peptidyl CaV2.2 inhibitor used clinically. Supporting this notion, we recently reported that in preclinical models, the state-dependent CaV2 inhibitor (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1) has an improved therapeutic window compared with ziconotide. Here we characterize TROX-1 inhibition of Cav2.2 channels in more detail. When channels are biased toward open/inactivated states by depolarizing the membrane potential under voltage-clamp electrophysiology, TROX-1 inhibits CaV2.2 channels with an IC50 of 0.11 μM. The voltage dependence of CaV2.2 inhibition was examined using automated electrophysiology. TROX-1 IC50 values were 4.2, 0.90, and 0.36 μM at −110, −90, and −70 mV, respectively. TROX-1 displayed use-dependent inhibition of CaV2.2 with a 10-fold IC50 separation between first (27 μM) and last (2.7 μM) pulses in a train. In a fluorescence-based calcium influx assay, TROX-1 inhibited CaV2.2 channels with an IC50 of 9.5 μM under hyperpolarized conditions and 0.69 μM under depolarized conditions. Finally, TROX-1 potency was examined across the CaV2 subfamily. Depolarized IC50 values were 0.29, 0.19, and 0.28 μM by manual electrophysiology using matched conditions and 1.8, 0.69, and 1.1 μM by calcium influx for CaV2.1, CaV2.2, and CaV2.3, respectively. Together, these in vitro data support the idea that a state-dependent, non–subtype-selective CaV2 channel inhibitor can achieve an improved therapeutic window over the relatively state-independent CaV2.2-selective inhibitor ziconotide in preclinical models of chronic pain.
The Journal of Physiology | 2005
James B Herrington; Manuel Calderon De La Barca Sanchez; Denize Wunderler; Lizhen Yan; Randal M. Bugianesi; Ivy E. Dick; Sam A. Clark; Richard M. Brochu; Birgit T. Priest; Martin Kohler; Owen B. McManus
Voltage‐gated potassium (Kv) currents of human pancreatic islet cells were studied by whole‐cell patch clamp recording. On average, 75% of the cells tested were identified as β‐cells by single cell, post‐recording RT‐PCR for insulin mRNA. In most cells, the dominant Kv current was a delayed rectifier. The delayed rectifier activated at potentials above −20 mV and had a V½ for activation of −5.3 mV. Onset of inactivation was slow for a major component (τ= 3.2 s at +20 mV) observed in all cells; a smaller component (τ= 0.30 s) with an amplitude of ∼25% was seen in some cells. Recovery from inactivation had a τ of 2.5 s at −80 mV and steady‐state inactivation had a V½ of −39 mV. In 12% of cells (21/182) a low‐threshold, transient Kv current (A‐current) was present. The A‐current activated at membrane potentials above −40 mV, inactivated with a time constant of 18.5 ms at −20 mV, and had a V½ for steady‐state inactivation of −52 mV. TEA inhibited total Kv current with an IC50= 0.54 mm and PAC, a disubstituted cyclohexyl Kv channel inhibitor, inhibited with an IC50= 0.57 μm. The total Kv current was insensitive to margatoxin (100 nm), agitoxin‐2 (50 nm), kaliotoxin (50 nm) and ShK (50 nm). Hanatoxin (100 nm) inhibited total Kv current by 65% at +20 mV. Taken together, these data provide evidence of at least two distinct types of Kv channels in human pancreatic β‐cells and suggest that more than one type of Kv channel may be involved in the regulation of glucose‐dependent insulin secretion.
Bioorganic & Medicinal Chemistry Letters | 2011
Sriram Tyagarajan; Prasun K. Chakravarty; Min Park; Bishan Zhou; James B Herrington; Kevin S. Ratliff; Randall M. Bugianesi; Brande S. Williams; Rodolfo J. Haedo; Andrew M. Swensen; Vivien A. Warren; McHardy M. Smith; Maria L. Garcia; Gregory J. Kaczorowski; Owen B. McManus; Kathryn A. Lyons; Xiaohua Li; Maria Madeira; Bindhu V. Karanam; Mitchell D. Green; Michael J. Forrest; Catherine Abbadie; Erin McGowan; Shruti Mistry; Nina Jochnowitz; Joseph L. Duffy
N-type calcium channels (Ca(v)2.2) have been shown to play a critical role in pain. A series of low molecular weight 2-aryl indoles were identified as potent Ca(v)2.2 blockers with good in vitro and in vivo potency.