Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Owen N. Beck is active.

Publication


Featured researches published by Owen N. Beck.


PLOS ONE | 2016

Characterizing the Mechanical Properties of Running-Specific Prostheses

Owen N. Beck; Paolo Taboga; Alena M. Grabowski

The mechanical stiffness of running-specific prostheses likely affects the functional abilities of athletes with leg amputations. However, each prosthetic manufacturer recommends prostheses based on subjective stiffness categories rather than performance based metrics. The actual mechanical stiffness values of running-specific prostheses (i.e. kN/m) are unknown. Consequently, we sought to characterize and disseminate the stiffness values of running-specific prostheses so that researchers, clinicians, and athletes can objectively evaluate prosthetic function. We characterized the stiffness values of 55 running-specific prostheses across various models, stiffness categories, and heights using forces and angles representative of those measured from athletes with transtibial amputations during running. Characterizing prosthetic force-displacement profiles with a 2nd degree polynomial explained 4.4% more of the variance than a linear function (p<0.001). The prosthetic stiffness values of manufacturer recommended stiffness categories varied between prosthetic models (p<0.001). Also, prosthetic stiffness was 10% to 39% less at angles typical of running 3 m/s and 6 m/s (10°-25°) compared to neutral (0°) (p<0.001). Furthermore, prosthetic stiffness was inversely related to height in J-shaped (p<0.001), but not C-shaped, prostheses. Running-specific prostheses should be tested under the demands of the respective activity in order to derive relevant characterizations of stiffness and function. In all, our results indicate that when athletes with leg amputations alter prosthetic model, height, and/or sagittal plane alignment, their prosthetic stiffness profiles also change; therefore variations in comfort, performance, etc. may be indirectly due to altered stiffness.


Journal of Applied Physiology | 2017

Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.

Owen N. Beck; Paolo Taboga; Alena M. Grabowski

Inspired by the springlike action of biological legs, running-specific prostheses are designed to enable athletes with lower-limb amputations to run. However, manufacturers recommendations for prosthetic stiffness and height may not optimize running performance. Therefore, we investigated the effects of using different prosthetic configurations on the metabolic cost and biomechanics of running. Five athletes with bilateral transtibial amputations each performed 15 trials on a force-measuring treadmill at 2.5 or 3.0 m/s. Athletes ran using each of 3 different prosthetic models (Freedom Innovations Catapult FX6, Össur Flex-Run, and Ottobock 1E90 Sprinter) with 5 combinations of stiffness categories (manufacturers recommended and ± 1) and heights (International Paralympic Committees maximum competition height and ± 2 cm) while we measured metabolic rates and ground reaction forces. Overall, prosthetic stiffness [fixed effect (β) = 0.036; P = 0.008] but not height (P ≥ 0.089) affected the net metabolic cost of transport; less stiff prostheses reduced metabolic cost. While controlling for prosthetic stiffness (in kilonewtons per meter), using the Flex-Run (β = -0.139; P = 0.044) and 1E90 Sprinter prostheses (β = -0.176; P = 0.009) reduced net metabolic costs by 4.3-4.9% compared with using the Catapult prostheses. The metabolic cost of running improved when athletes used prosthetic configurations that decreased peak horizontal braking ground reaction forces (β = 2.786; P = 0.001), stride frequencies (β = 0.911; P < 0.001), and leg stiffness values (β = 0.053; P = 0.009). Remarkably, athletes did not maintain overall leg stiffness across prosthetic stiffness conditions. Rather, the in-series prosthetic stiffness governed overall leg stiffness. The metabolic cost of running in athletes with bilateral transtibial amputations is influenced by prosthetic model and stiffness but not height.NEW & NOTEWORTHY We measured the metabolic rates and biomechanics of five athletes with bilateral transtibial amputations while running with different prosthetic configurations. The metabolic cost of running for these athletes is minimized by using an optimal prosthetic model and reducing prosthetic stiffness. The metabolic cost of running was independent of prosthetic height, suggesting that longer legs are not advantageous for distance running. Moreover, the in-series prosthetic stiffness governs the leg stiffness of athletes with bilateral leg amputations.


Journal of Applied Physiology | 2018

Viewpoint: Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance

Owen N. Beck; Shalaya Kipp; William C. Byrnes; Rodger Kram

Viewpoint: Use aerobic energy expenditure instead of oxygen uptake 1 to quantify exercise intensity and predict endurance performance 2 3 Owen N. Beck, Shalaya Kipp, William C. Byrnes and Rodger Kram 4 Department of Integrative Physiology, University of Colorado, Boulder, CO 5 6 Abbreviated Title for Running Header 7 Use energy not oxygen 8 9 Corresponding Author: 10 Name: Owen N. Beck 11 Address: 455 Callaway 12 Department of Mechanical Engineering 13 801 Ferst Drive 14 Georgia Institute of Technology 15 Atlanta, GA 30332-0405 16 17


Journal of Applied Physiology | 2017

Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations

Owen N. Beck; Paolo Taboga; Alena M. Grabowski

Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P < 0.001] and Össur Flex-Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness (P ≥ 0.180) nor height (P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P < 0.001) averaged from both legs. Metabolic cost was reduced with more symmetric peak vertical ground reaction forces (β = 0.007; P = 0.003) but was unrelated to stride kinematic symmetry (P ≥ 0.636). Therefore, prosthetic recommendations based on symmetric stride kinematics do not necessarily minimize the metabolic cost of running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations.NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with increased in-series surface stiffness, biological limb stiffness for athletes with unilateral transtibial amputations is positively correlated with increased in-series (prosthetic) stiffness.


Medicine and Science in Sports and Exercise | 2016

Older Runners Retain Youthful Running Economy despite Biomechanical Differences.

Owen N. Beck; Shalaya Kipp; Jaclyn M. Roby; Alena M. Grabowski; Rodger Kram; Justus D. Ortega

PURPOSE Sixty-five years of age typically marks the onset of impaired walking economy. However, running economy has not been assessed beyond the age of 65 yr. Furthermore, a critical determinant of running economy is the spring-like storage and return of elastic energy from the leg during stance, which is related to leg stiffness. Therefore, we investigated whether runners older than 65 yr retain youthful running economy and/or leg stiffness across running speeds. METHODS Fifteen young and 15 older runners ran on a force-instrumented treadmill at 2.01, 2.46, and 2.91 m·s(-1). We measured their rates of metabolic energy consumption (i.e., metabolic power), ground reaction forces, and stride kinematics. RESULTS There were only small differences in running economy between young and older runners across the range of speeds. Statistically, the older runners consumed 2% to 9% less metabolic energy than the young runners across speeds (P = 0.012). Also, the leg stiffness of older runners was 10% to 20% lower than that of young runners across the range of speeds (P = 0.002), and in contrast to the younger runners, the leg stiffness of older runners decreased with speed (P < 0.001). CONCLUSIONS Runners beyond 65 yr of age maintain youthful running economy despite biomechanical differences. It may be that vigorous exercise, such as running, prevents the age related deterioration of muscular efficiency and, therefore, may make everyday activities easier.


Journal of the Royal Society Interface | 2017

How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?

Owen N. Beck; Paolo Taboga; Alena M. Grabowski

Limited available information describes how running-specific prostheses and running speed affect the biomechanics of athletes with bilateral transtibial amputations. Accordingly, we quantified the effects of prosthetic stiffness, height and speed on the biomechanics of five athletes with bilateral transtibial amputations during treadmill running. Each athlete performed a set of running trials with 15 different prosthetic model, stiffness and height combinations. Each set of trials began with the athlete running on a force-measuring treadmill at 3 m s−1, subsequent trials incremented by 1 m s−1 until they achieved their fastest attainable speed. We collected ground reaction forces (GRFs) during each trial. Prosthetic stiffness, height and running speed each affected biomechanics. Specifically, with stiffer prostheses, athletes exhibited greater peak and stance average vertical GRFs (β = 0.03; p < 0.001), increased overall leg stiffness (β = 0.21; p < 0.001), decreased ground contact time (β = −0.07; p < 0.001) and increased step frequency (β = 0.042; p < 0.001). Prosthetic height inversely associated with step frequency (β = −0.021; p < 0.001). Running speed inversely associated with leg stiffness (β = −0.58; p < 0.001). Moreover, at faster running speeds, the effect of prosthetic stiffness and height on biomechanics was mitigated and unchanged, respectively. Thus, prosthetic stiffness, but not height, likely influences distance running performance more than sprinting performance for athletes with bilateral transtibial amputations.


Journal of Applied Physiology | 2018

Case studies in physiology: The biomechanics of the fastest sprinter with a unilateral transtibial amputation

Owen N. Beck; Alena M. Grabowski

People have debated whether athletes with transtibial amputations should compete with nonamputees in track events despite insufficient information regarding how the use of running-specific prostheses (RSPs) affect athletic performance. Thus, we sought to quantify the spatiotemporal variables, ground reaction forces, and spring-mass mechanics of the fastest athlete with a unilateral transtibial amputation using an RSP to reveal how he adapts his biomechanics to achieve elite running speeds. Accordingly, we measured ground reaction forces during treadmill running trials spanning 2.87 to 11.55 m/s of the current male International Paralympic Committee T44 100- and 200-m world record holder. To achieve faster running speeds, the present studys athlete increased his affected leg (AL) step lengths ( P < 0.001) through longer contact lengths ( P < 0.001) and his unaffected leg (UL) step lengths ( P < 0.001) through longer contact lengths ( P < 0.001) and greater stance average vertical ground reaction forces ( P < 0.001). At faster running speeds, step time decreased for both legs ( P < 0.001) through shorter ground contact and aerial times ( P < 0.001). Unlike athletes with unilateral transtibial amputations, this athlete maintained constant AL and UL stiffness across running speeds ( P ≥ 0.569). Across speeds, AL step lengths were 8% longer ( P < 0.001) despite 16% lower AL stance average vertical ground reaction forces compared with the UL ( P < 0.001). The present studys athlete exhibited biomechanics that differed from those of athletes with bilateral and without transtibial amputations. Overall, we present the biomechanics of the fastest athlete with a unilateral transtibial amputation, providing insight into the functional abilities of athletes with transtibial amputations using running-specific prostheses. NEW & NOTEWORTHY The present studys athlete achieved the fastest treadmill running trial ever attained by an individual with a leg amputation (11.55 m/s). From 2.87 to 11.55 m/s, the present studys athlete maintained constant affected and unaffected leg stiffness, which is atypical for athletes with unilateral transtibial amputations. Furthermore, the asymmetric vertical ground reaction forces of athletes with unilateral transtibial amputations during running may be the result of leg length discrepancies.


Journal of Applied Physiology | 2018

Last Word on Viewpoint: Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict endurance performance

Owen N. Beck; Shalaya Kipp; William C. Byrnes; Rodger Kram


Exercise and Sport Sciences Reviews | 2018

Athletes with Versus Without Leg Amputations: Different Biomechanics, Similar Running Economy

Owen N. Beck; Alena M. Grabowski


PLOS ONE | 2017

Correction: Characterizing the Mechanical Properties of Running-Specific Prostheses

Owen N. Beck; Paolo Taboga; Alena M. Grabowski

Collaboration


Dive into the Owen N. Beck's collaboration.

Top Co-Authors

Avatar

Alena M. Grabowski

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodger Kram

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Shalaya Kipp

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jaclyn M. Roby

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Justus D. Ortega

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

William C. Byrnes

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Aria L. Turney

Humboldt State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge