Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Owen Rowland is active.

Publication


Featured researches published by Owen Rowland.


The Arabidopsis Book | 2010

Acyl-Lipid Metabolism

Younghua Li-Beisson; Basil S. Shorrosh; Fred Beisson; Mats X. Andersson; Vincent Arondel; Philip D. Bates; Sébastien Baud; David McK. Bird; Allan DeBono; Timothy P. Durrett; Rochus Franke; Ian Graham; Kenta Katayama; Amélie A. Kelly; Tony R. Larson; Jonathan E. Markham; Martine Miquel; Isabel Molina; Ikuo Nishida; Owen Rowland; Lacey Samuels; Katherine M. Schmid; Hajime Wada; Ruth Welti; Changcheng Xu; Rémi Zallot; John B. Ohlrogge

Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.


Plant Physiology | 2004

The Transcriptional Innate Immune Response to flg22. Interplay and Overlap with Avr Gene-Dependent Defense Responses and Bacterial Pathogenesis

Lionel Navarro; Cyril Zipfel; Owen Rowland; Ingo Keller; Silke Robatzek; Thomas Boller; Jonathan D. G. Jones

Animals and plants carry recognition systems to sense bacterial flagellin. Flagellin perception in Arabidopsis involves FLS2, a Leu-rich-repeat receptor kinase. We surveyed the early transcriptional response of Arabidopsis cell cultures and seedlings within 60 min of treatment with flg22, a peptide corresponding to the most conserved domain of flagellin. Using Affymetrix microarrays, approximately 3.0% of 8,200 genes displayed transcript level changes in flg22 elicited suspension cultures and seedlings. FLARE (Flagellin Rapidly Elicited) genes mostly encode signaling components, such as transcription factors, protein kinases/phosphatases, and proteins that regulate protein turnover. Approximately 80% of flg22-induced genes were also up-regulated in Arabidopsis seedlings treated with cycloheximide. This suggests that many FLARE genes are negatively regulated by rapidly turned-over repressor proteins. Twenty-one tobacco Avr9/Cf-9 rapidly elicited (ACRE) cDNA full-length sequences were used to search for their Arabidopsis orthologs (AtACRE). We identified either single or multiple putative orthologs for 17 ACRE genes. For 13 of these ACRE genes, at least one Arabidopsis ortholog was induced in flg22-elicited Arabidopsis suspension cells and seedlings. This result revealed a substantial overlap between the Arabidopsis flg22 response and the tobacco Avr9 race-specific defense response. We also compared FLARE gene sets and genes induced in basal or gene-for-gene interactions upon different Pseudomonas syringae treatments, and infer that Pseudomonas syringae pv tomato represses the flagellin-initiated defense response.


The Plant Cell | 2003

Nicotiana benthamiana gp91phox Homologs NbrbohA and NbrbohB Participate in H2O2 Accumulation and Resistance to Phytophthora infestans

Hirofumi Yoshioka; Noriko Numata; Kazumi Nakajima; Shinpei Katou; Kazuhito Kawakita; Owen Rowland; Jonathan D. G. Jones; Noriyuki Doke

Active oxygen species (AOS) are responsible for triggering defense responses in plants. Respiratory burst oxidase homologs (rboh genes) have been implicated in AOS generation. We have isolated two rboh cDNAs, NbrbohA and NbrbohB, from Nicotiana benthamiana leaves. NbrbohA was expressed constitutively at a low level and the transcripts were increased after mechanical stress of control leaf infiltration, whereas NbrbohB was induced specifically by the protein elicitor INF1 from the potato pathogen Phytophthora infestans. We examined the function of the Nbrboh genes in AOS generation and in the hypersensitive response (HR) using virus-induced gene silencing (VIGS). VIGS indicated that both genes are required for H2O2 accumulation and for resistance to Phytophthora. VIGS of Nbrboh genes also led to a reduction and delay of HR cell death caused by INF1. We further demonstrate that the induction of HR-like cell death by overexpression of a constitutively active mutant of a mitogen-activated protein kinase kinase, MEKDD, is compromised by VIGS of NbrbohB. We found that MEKDD induced NbrbohB but not NbrbohA. This work provides genetic evidence for the involvement of a mitogen-activated protein kinase cascade in the regulation of rboh genes.


The Plant Cell | 2000

cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles

Wendy E. Durrant; Owen Rowland; Pedro Piedras; K. E. Hammond-Kosack; Jonathan D. G. Jones

The tomato Cf-9 gene confers resistance to races of the fungal pathogen Cladosporium fulvum expressing the Avr9 gene. cDNA amplified fragment length polymorphism analysis was used to display transcripts whose expression is rapidly altered during the Avr9- and Cf-9–mediated defense response in tobacco cell cultures. Diphenyleneiodonium was used to abolish the production of active oxygen species during gene induction. Of 30,000 fragments inspected, 290 showed altered abundance, of which 263 were induced independently of active oxygen species. cDNA clones were obtained for 13 ACRE (for Avr9/Cf-9 rapidly elicited) genes. ACRE gene induction occurred in the presence of cycloheximide. Avr9 induced ACRE gene expression in leaves. Surprisingly, ACRE genes were also rapidly but transiently induced in leaves in response to other stresses. The amino acid sequences of some ACRE proteins are homologous to sequences of known proteins such as ethylene response element binding protein transcription factors, the N resistance protein, a calcium binding protein, 13-lipoxygenase, and a RING-H2 zinc finger protein. Rapid induction of ACRE genes suggests that they play a pivotal role during plant defense responses.


The Plant Cell | 2005

Disruptions of the Arabidopsis Enoyl-CoA Reductase Gene Reveal an Essential Role for Very-Long-Chain Fatty Acid Synthesis in Cell Expansion during Plant Morphogenesis

Huanquan Zheng; Owen Rowland; Ljerka Kunst

In the absence of cell migration, plant architecture is largely determined by the direction and extent of cell expansion during development. In this report, we show that very-long-chain fatty acid (VLCFA) synthesis plays an essential role in cell expansion. The Arabidopsis thaliana eceriferum10 (cer10) mutants exhibit severe morphological abnormalities and reduced size of aerial organs. These mutants are disrupted in the At3g55360 gene, previously identified as a gene coding for enoyl-CoA reductase (ECR), an enzyme required for VLCFA synthesis. The absence of ECR activity results in a reduction of cuticular wax load and affects VLCFA composition of seed triacylglycerols and sphingolipids, demonstrating in planta that ECR is involved in all VLCFA elongation reactions in Arabidopsis. Epidermal and seed-specific silencing of ECR activity resulted in a reduction of cuticular wax load and the VLCFA content of seed triacylglycerols, respectively, with no effects on plant morphogenesis, suggesting that the developmental phenotypes arise from abnormal sphingolipid composition. Cellular analysis revealed aberrant endocytic membrane traffic and defective cell expansion underlying the morphological defects of cer10 mutants.


Plant Physiology | 2006

CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis

Owen Rowland; Huanquan Zheng; Shelley R. Hepworth; Patricia Lam; Reinhard Jetter; Ljerka Kunst

A waxy cuticle that serves as a protective barrier against uncontrolled water loss and environmental damage coats the aerial surfaces of land plants. It is composed of a cutin polymer matrix and waxes. Cuticular waxes are complex mixtures of very-long-chain fatty acids and their derivatives. We report here the molecular cloning and characterization of CER4, a wax biosynthetic gene from Arabidopsis (Arabidopsis thaliana). Arabidopsis cer4 mutants exhibit major decreases in stem primary alcohols and wax esters, and slightly elevated levels of aldehydes, alkanes, secondary alcohols, and ketones. This phenotype suggested that CER4 encoded an alcohol-forming fatty acyl-coenzyme A reductase (FAR). We identified eight FAR-like genes in Arabidopsis that are highly related to an alcohol-forming FAR expressed in seeds of jojoba (Simmondsia chinensis). Molecular characterization of CER4 alleles and genomic complementation revealed that one of these eight genes, At4g33790, encoded the FAR required for cuticular wax production. Expression of CER4 cDNA in yeast (Saccharomyces cerevisiae) resulted in the accumulation of C24:0 and C26:0 primary alcohols. Fully functional green fluorescent protein-tagged CER4 protein was localized to the endoplasmic reticulum in yeast cells by confocal microscopy. Analysis of gene expression by reverse transcription-PCR indicated that CER4 was expressed in leaves, stems, flowers, siliques, and roots. Expression of a β-glucuronidase reporter gene driven by the CER4 promoter in transgenic plants was detected in epidermal cells of leaves and stems, consistent with a dedicated role for CER4 in cuticular wax biosynthesis. CER4 was also expressed in all cell types in the elongation zone of young roots. These data indicate that CER4 is an alcohol-forming FAR that has specificity for very-long-chain fatty acids and is responsible for the synthesis of primary alcohols in the epidermal cells of aerial tissues and in roots.


The Plant Cell | 2006

The E3 ubiquitin ligase activity of Arabidopsis PLANT U-BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense

Chengwei Yang; Rocío González-Lamothe; Richard Ewan; Owen Rowland; Hirofumi Yoshioka; Matt Shenton; Heng Ye; Elizabeth O'Donnell; Jonathan D. G. Jones; Ari Sadanandom

Previous analysis of transcriptional changes after elicitation of Cf-9 transgenic tobacco (Nicotiana tabacum) by Avr9 peptide revealed a rapidly upregulated gene, ACRE276. We show that ACRE276 is transiently induced in wounded leaves within 15 min, but upon Avr9 elicitor treatment, this upregulation is enhanced and maintained until cell death onset in Cf-9 tobacco. ACRE276 RNA interference (RNAi) silencing in tobacco results in loss of hypersensitive response (HR) specified by Cf resistance genes. ACRE276 RNAi plants are also compromised for HR mediated by the tobacco mosaic virus defense elicitor p50. Silencing tomato (Lycopersicon esculentum) ACRE276 leads to breakdown of Cf-9–specified resistance against Cladosporium fulvum leaf mold. We confirmed that tobacco ACRE276 is an E3 ubiquitin ligase requiring an intact U-box domain. Bioinformatic analyses revealed Arabidopsis thaliana PLANT U-BOX17 (PUB17) and Brassica napus ARC1 as the closest homologs of tobacco ACRE276. Transiently expressing PUB17 in Cf-9 tobacco silenced for ACRE276 restores HR, while mutant PUB17 lacking E3 ligase activity fails to do so, demonstrating that PUB17 ligase activity is crucial for defense signaling. Arabidopsis PUB17 knockout plants are compromised in RPM1- and RPS4-mediated resistance against Pseudomonas syringae pv tomato containing avirulence genes AvrB and AvrRPS4, respectively. We identify a conserved class of U-box ARMADILLO repeat E3 ligases that are positive regulators of cell death and defense across the Solanaceae and Brassicaceae.


The Plant Cell | 2005

Functional Analysis of Avr9/Cf-9 Rapidly Elicited Genes Identifies a Protein Kinase, ACIK1, That Is Essential for Full Cf-9–Dependent Disease Resistance in Tomato

Owen Rowland; Andrea A. Ludwig; Catherine J. Merrick; Fabienne Baillieul; Frances Tracy; Wendy E. Durrant; Lillian K. Fritz-Laylin; Vladimir Nekrasov; Kimmen Sjölander; Hirofumi Yoshioka; Jonathan D. G. Jones

Tomato (Lycopersicon esculentum) Cf genes confer resistance to the fungal pathogen Cladosporium fulvum through recognition of secreted avirulence (Avr) peptides. Plant defense responses, including rapid alterations in gene expression, are immediately activated upon perception of the pathogen. Previously, we identified a collection of Avr9/Cf-9 rapidly (15 to 30 min) elicited (ACRE) genes from tobacco (Nicotiana tabacum). Many of the ACRE genes encode putative signaling components and thus may play pivotal roles in the initial development of the defense response. To assess the requirement of 42 of these genes in the hypersensitive response (HR) induced by Cf-9/Avr9 or by Cf-4/Avr4, we used virus-induced gene silencing (VIGS) in N. benthamiana. Three genes were identified that when silenced compromised the Cf-mediated HR. We further characterized one of these genes, which encodes a Ser/Thr protein kinase called Avr9/Cf-9 induced kinase 1 (ACIK1). ACIK1 mRNA was rapidly upregulated in tobacco and tomato upon elicitation by Avr9 and by wounding. Silencing of ACIK1 in tobacco resulted in a reduced HR that correlated with loss of ACIK1 transcript. Importantly, ACIK1 was found to be required for Cf-9/Avr9- and Cf-4/Avr4-mediated HRs but not for the HR or resistance mediated by other resistance/Avr systems, such as Pto/AvrPto, Rx/Potato virus X, or N/Tobacco mosaic virus. Moreover, VIGS of LeACIK1 in tomato decreased Cf-9–mediated resistance to C. fulvum, showing the importance of ACIK1 in disease resistance.


Plant Journal | 2009

Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

Shiyou Lü; Tao Song; Dylan K. Kosma; Eugene P. Parsons; Owen Rowland; Matthew A. Jenks

Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.


Plant Physiology | 2010

Three Arabidopsis Fatty Acyl-Coenzyme A Reductases, FAR1, FAR4, and FAR5, Generate Primary Fatty Alcohols Associated with Suberin Deposition

Frédéric Domergue; Sollapura J. Vishwanath; Jérôme Joubès; Jasmine Ono; Jennifer A. Lee; Matthieu Bourdon; Reem Alhattab; Christine Lowe; Stéphanie Pascal; René Lessire; Owen Rowland

Suberin is a protective hydrophobic barrier consisting of phenolics, glycerol, and a variety of fatty acid derivatives, including C18:0-C22:0 primary fatty alcohols. An eight-member gene family encoding alcohol-forming fatty acyl-coenzyme A reductases (FARs) has been identified in Arabidopsis (Arabidopsis thaliana). Promoter-driven expression of the β-glucuronidase reporter gene indicated that three of these genes, FAR1(At5g22500), FAR4(At3g44540), and FAR5(At3g44550), are expressed in root endodermal cells. The three genes were transcriptionally induced by wounding and salt stress. These patterns of gene expression coincide with known sites of suberin deposition. We then characterized a set of mutants with T-DNA insertions in FAR1, FAR4, or FAR5 and found that the suberin compositions of roots and seed coats were modified in each far mutant. Specifically, C18:0-OH was reduced in far5-1, C20:0-OH was reduced in far4-1, and C22:0-OH was reduced in far1-1. We also analyzed the composition of polymer-bound lipids of leaves before and after wounding and found that the basal levels of C18:0-C22:0 primary alcohols in wild-type leaves were increased by wounding. In contrast, C18:0-OH and C22:0-OH were not increased by wounding in far5-1 and far1-1 mutants, respectively. Heterologous expression of FAR1, FAR4, and FAR5 in yeast confirmed that they are indeed active alcohol-forming FARs with distinct, but overlapping, chain length specificities ranging from C18:0 to C24:0. Altogether, these results indicate that Arabidopsis FAR1, FAR4, and FAR5 generate the fatty alcohols found in root, seed coat, and wound-induced leaf tissue.

Collaboration


Dive into the Owen Rowland's collaboration.

Top Co-Authors

Avatar

Frédéric Domergue

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Dylan K. Kosma

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ljerka Kunst

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Rajagopal Subramaniam

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge