Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Owen S. Skinner is active.

Publication


Featured researches published by Owen S. Skinner.


Analytical Chemistry | 2014

Applying label-free quantitation to top down proteomics.

Ioanna Ntai; Kyunggon Kim; Ryan T. Fellers; Owen S. Skinner; Archer Smith; Bryan P. Early; John P. Savaryn; Richard D. LeDuc; Paul M. Thomas; Neil L. Kelleher

With the prospect of resolving whole protein molecules into their myriad proteoforms on a proteomic scale, the question of their quantitative analysis in discovery mode comes to the fore. Here, we demonstrate a robust pipeline for the identification and stringent scoring of abundance changes of whole protein forms <30 kDa in a complex system. The input is ∼100–400 μg of total protein for each biological replicate, and the outputs are graphical displays depicting statistical confidence metrics for each proteoform (i.e., a volcano plot and representations of the technical and biological variation). A key part of the pipeline is the hierarchical linear model that is tailored to the original design of the study. Here, we apply this new pipeline to measure the proteoform-level effects of deleting a histone deacetylase (rpd3) in S. cerevisiae. Over 100 proteoform changes were detected above a 5% false positive threshold in WT vs the Δrpd3 mutant, including the validating observation of hyperacetylation of histone H4 and both H2B isoforms. Ultimately, this approach to label-free top down proteomics in discovery mode is a critical technical advance for testing the hypothesis that whole proteoforms can link more tightly to complex phenotypes in cell and disease biology than do peptides created in shotgun proteomics.


Nature Methods | 2016

An informatic framework for decoding protein complexes by top-down mass spectrometry

Owen S. Skinner; Pierre C. Havugimana; Nicole A. Haverland; Luca Fornelli; Bryan P. Early; Joseph B. Greer; Ryan T. Fellers; Kenneth R. Durbin; Luis H. F. Do Vale; Rafael D. Melani; Henrique S. Seckler; Micah T. Nelp; Mikhail E. Belov; Stevan Horning; Alexander Makarov; Richard D. LeDuc; Vahe Bandarian; Philip D. Compton; Neil L. Kelleher

Efforts to map the human protein interactome have resulted in information about thousands of multi-protein assemblies housed in public repositories, but the molecular characterization and stoichiometry of their protein subunits remains largely unknown. Here, we report a computational search strategy that supports hierarchical top-down analysis for precise identification and scoring of multi-proteoform complexes by native mass spectrometry.


Molecular & Cellular Proteomics | 2016

Mapping proteoforms and protein complexes from king cobra venom using both denaturing and native top-down proteomics

Rafael D. Melani; Owen S. Skinner; Luca Fornelli; Gilberto B. Domont; Philip D. Compton; Neil L. Kelleher

Characterizing whole proteins by top-down proteomics avoids a step of inference encountered in the dominant bottom-up methodology when peptides are assembled computationally into proteins for identification. The direct interrogation of whole proteins and protein complexes from the venom of Ophiophagus hannah (king cobra) provides a sharply clarified view of toxin sequence variation, transit peptide cleavage sites and post-translational modifications (PTMs) likely critical for venom lethality. A tube-gel format for electrophoresis (called GELFrEE) and solution isoelectric focusing were used for protein fractionation prior to LC-MS/MS analysis resulting in 131 protein identifications (18 more than bottom-up) and a total of 184 proteoforms characterized from 14 protein toxin families. Operating both GELFrEE and mass spectrometry to preserve non-covalent interactions generated detailed information about two of the largest venom glycoprotein complexes: the homodimeric l-amino acid oxidase (∼130 kDa) and the multichain toxin cobra venom factor (∼147 kDa). The l-amino acid oxidase complex exhibited two clusters of multiproteoform complexes corresponding to the presence of 5 or 6 N-glycans moieties, each consistent with a distribution of N-acetyl hexosamines. Employing top-down proteomics in both native and denaturing modes provides unprecedented characterization of venom proteoforms and their complexes. A precise molecular inventory of venom proteins will propel the study of snake toxin variation and the targeted development of new antivenoms or other biotherapeutics.


Analytical Chemistry | 2015

Native GELFrEE: A New Separation Technique for Biomolecular Assemblies

Owen S. Skinner; Luis H. F. Do Vale; Adam D. Catherman; Pierre C. Havugimana; Marcelo Valle de Sousa; Philip D. Compton; Neil L. Kelleher

The cadre of protein complexes in cells performs an array of functions necessary for life. Their varied structures are foundational to their ability to perform biological functions, lending great import to the elucidation of complex composition and dynamics. Native separation techniques that are operative on low sample amounts and provide high resolution are necessary to gain valuable data on endogenous complexes. Here, we detail and optimize the use of tube gel separations to produce samples proven compatible with native, multistage mass spectrometry (nMS/MS). We find that a continuous system (i.e., no stacking gel) with a gradient in its extent of cross-linking and use of the clear native buffer system performs well for both fractionation and native mass spectrometry of heart extracts and a fungal secretome. This integrated advance in separations and nMS/MS offers the prospect of untargeted proteomics at the next hierarchical level of protein organization in biology.


Analytical Chemistry | 2014

Fragmentation of integral membrane proteins in the gas phase

Owen S. Skinner; Adam D. Catherman; Bryan P. Early; Paul M. Thomas; Philip D. Compton; Neil L. Kelleher

Integral membrane proteins (IMPs) are of great biophysical and clinical interest because of the key role they play in many cellular processes. Here, a comprehensive top down study of 152 IMPs and 277 soluble proteins from human H1299 cells including 11 087 fragments obtained from collisionally activated dissociation (CAD), 6452 from higher-energy collisional dissociation (HCD), and 2981 from electron transfer dissociation (ETD) shows their great utility and complementarity for the identification and characterization of IMPs. A central finding is that ETD is ∼2-fold more likely to cleave in soluble regions than threshold fragmentation methods, whereas the reverse is observed in transmembrane domains with an observed ∼4-fold bias toward CAD and HCD. The location of charges just prior to dissociation is consistent with this directed fragmentation: protons remain localized on basic residues during ETD but easily mobilize along the backbone during collisional activation. The fragmentation driven by these protons, which is most often observed in transmembrane domains, both is of higher yield and occurs over a greater number of backbone cleavage sites. Further, while threshold dissociation events in transmembrane domains are on average 10.1 (CAD) and 9.2 (HCD) residues distant from the nearest charge site (R, K, H, N-terminus), fragmentation is strongly influenced by the N- or C-terminal position relative to that site: the ratio of observed b- to y-fragments is ∼1:3 if the cleavage occurs >7 residues N-terminal and ∼3:1 if it occurs >7 residues C-terminal to the nearest basic site. Threshold dissociation products driven by a mobilized proton appear to be strongly dependent on not only relative position of a charge site but also N- or C-terminal directionality of proton movement.


Journal of the American Society for Mass Spectrometry | 2015

Analyzing Internal Fragmentation of Electrosprayed Ubiquitin Ions During Beam-Type Collisional Dissociation

Kenneth R. Durbin; Owen S. Skinner; Ryan T. Fellers; Neil L. Kelleher

AbstractGaseous fragmentation of intact proteins is multifaceted and can be unpredictable by current theories in the field. Contributing to the complexity is the multitude of precursor ion states and fragmentation channels. Terminal fragment ions can be re-fragmented, yielding product ions containing neither terminus, termed internal fragment ions. In an effort to better understand and capitalize upon this fragmentation process, we collisionally dissociated the high (13+), middle (10+), and low (7+) charge states of electrosprayed ubiquitin ions. Both terminal and internal fragmentation processes were quantified through step-wise increases of voltage potential in the collision cell. An isotope fitting algorithm matched observed product ions to theoretical terminal and internal fragment ions. At optimal energies for internal fragmentation of the 10+, nearly 200 internal fragments were observed; on average each of the 76 residues in ubiquitin was covered by 24.1 internal fragments. A pertinent finding was that formation of internal ions occurs at similar energy thresholds as terminal b- and y-ion types in beam-type activation. This large amount of internal fragmentation is frequently overlooked during top-down mass spectrometry. As such, we present several new approaches to visualize internal fragments through modified graphical fragment maps. With the presented advances of internal fragment ion accounting and visualization, the total percentage of matched fragment ions increased from approximately 40% to over 75% in a typical beam-type MS/MS spectrum. These sequence coverage improvements offer greater characterization potential for whole proteins with no needed experimental changes and could be of large benefit for future high-throughput intact protein analysis. Graphical Abstractᅟ


Nature Chemical Biology | 2017

Top-down characterization of endogenous protein complexes with native proteomics

Owen S. Skinner; Nicole A. Haverland; Luca Fornelli; Rafael D. Melani; Luis H. F. Do Vale; Henrique S. Seckler; Peter F. Doubleday; Luis F. Schachner; Kristina Srzentić; Neil L. Kelleher; Philip D. Compton

Protein complexes exhibit great diversity in protein membership, post-translational modifications and noncovalent cofactors, enabling them to function as the actuators of many important biological processes. The exposition of these molecular features with current methods lacks either throughput or molecular specificity, ultimately limiting the use of protein complexes as direct analytical targets in a wide range of applications. Here, we apply native proteomics, enabled by a multistage tandem mass spectrometry approach, to characterize 125 intact endogenous complexes and 217 distinct proteoforms derived from mouse heart and human cancer cell lines in discovery mode. The native conditions preserved soluble protein–protein interactions, high-stoichiometry noncovalent cofactors, covalent modifications to cysteines, and, remarkably, superoxide ligands bound to the metal cofactor of superoxide dismutase 2. The data enable precise compositional analysis of protein complexes as they exist in the cell and demonstrate a new approach that uses mass spectrometry as a bridge to structural biology.


Journal of Proteomics | 2016

Targeted analysis of recombinant NF kappa B (RelA/p65) by denaturing and native top down mass spectrometry.

John P. Savaryn; Owen S. Skinner; Luca Fornelli; Ryan T. Fellers; Philip D. Compton; Scott S. Terhune; Michael Abecassis; Neil L. Kelleher

UNLABELLED Measuring post-translational modifications on transcription factors by targeted mass spectrometry is hampered by low protein abundance and inefficient isolation. Here, we utilized HaloTag technology to overcome these limitations and evaluate various top down mass spectrometry approaches for measuring NF-κB p65 proteoforms isolated from human cells. We show isotopic resolution of N-terminally acetylated p65 and determined it is the most abundant proteoform expressed following transfection in 293T cells. We also show MS(1) evidence for monophosphorylation of p65 under similar culture conditions and describe a high propensity for p65 proteoforms to fragment internally during beam-style MS(2) fragmentation; up to 71% of the fragment ions could be matched as internals in some fragmentation spectra. Finally, we used native spray mass spectrometry to measure proteins copurifying with p65 and present evidence for the native detection of p65, 71kDa heat shock protein, and p65 homodimer. Collectively, our work demonstrates the efficient isolation and top down mass spectrometry analysis of p65 from human cells, and we discuss the perturbations of overexpressing tagged proteins to study their biochemistry. This article is part of a Special Issue entitled: Protein Species. BIOLOGICAL SIGNIFICANCE Characterizing transcription factor proteoforms in human cells is of high value to the field of molecular biology; many agree that post-translational modifications and combinations thereof play a critical role in modulating transcription factor activity. Thus, measuring these modifications promises increased understanding of molecular mechanisms governing the regulation of complex gene expression outcomes. To date, comprehensive characterization of transcription factor proteoforms within human cells has eluded measurement, owing primarily-with regard to top down mass spectrometry-to large protein size and low relative abundance. Here, we utilized HaloTag technology and recombinant protein expression to overcome these limitations and show top down mass spectrometry characterization of proteoforms of the 60kDa NF-kB protein, p65. By optimizing the analytical procedure (i.e. purification, MS(1), and MS(2)), our results make important progress toward the ultimate goal of targeted transcription factor characterization from endogenous loci.


Nature Biotechnology | 2015

Illuminating the dark matter of shotgun proteomics

Owen S. Skinner; Neil L. Kelleher

Many of the unassignable spectra in proteomics data represent peptides with post-translational modifications.


Journal of the American Society for Mass Spectrometry | 2017

Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry

Nicole A. Haverland; Owen S. Skinner; Ryan T. Fellers; Areeba Tariq; Bryan P. Early; Richard D. LeDuc; Luca Fornelli; Philip D. Compton; Neil L. Kelleher

AbstractFragmentation of intact proteins in the gas phase is influenced by amino acid composition, the mass and charge of precursor ions, higher order structure, and the dissociation technique used. The likelihood of fragmentation occurring between a pair of residues is referred to as the fragmentation propensity and is calculated by dividing the total number of assigned fragmentation events by the total number of possible fragmentation events for each residue pair. Here, we describe general fragmentation propensities when performing top-down mass spectrometry (TDMS) using denaturing or native electrospray ionization. A total of 5311 matched fragmentation sites were collected for 131 proteoforms that were analyzed over 165 experiments using native top-down mass spectrometry (nTDMS). These data were used to determine the fragmentation propensities for 399 residue pairs. In comparison to denatured top-down mass spectrometry (dTDMS), the fragmentation pathways occurring either N-terminal to proline or C-terminal to aspartic acid were even more enhanced in nTDMS compared with other residues. More generally, 257/399 (64%) of the fragmentation propensities were significantly altered (P ≤ 0.05) when using nTDMS compared with dTDMS, and of these, 123 were altered by 2-fold or greater. The most notable enhancements of fragmentation propensities for TDMS in native versus denatured mode occurred (1) C-terminal to aspartic acid, (2) between phenylalanine and tryptophan (F|W), and (3) between tryptophan and alanine (W|A). The fragmentation propensities presented here will be of high value in the development of tailored scoring systems used in nTDMS of both intact proteins and protein complexes. Graphical Abstractᅟ

Collaboration


Dive into the Owen S. Skinner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge