Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Øystein Fodstad is active.

Publication


Featured researches published by Øystein Fodstad.


Nature | 2015

Tumour exosome integrins determine organotropic metastasis.

Ayuko Hoshino; Bruno Costa-Silva; Tang-Long Shen; Goncalo Rodrigues; Ayako Hashimoto; Milica Tesic Mark; Henrik Molina; Shinji Kohsaka; Angela Di Giannatale; Sophia Ceder; Swarnima Singh; Caitlin Williams; Nadine Soplop; Kunihiro Uryu; Lindsay A. Pharmer; Tari A. King; Linda Bojmar; Alexander E. Davies; Yonathan Ararso; Tuo Zhang; Haiying Zhang; Jonathan M. Hernandez; Joshua Mitchell Weiss; Vanessa D. Dumont-Cole; Kimberly Kramer; Leonard H. Wexler; Aru Narendran; Gary K. Schwartz; John H. Healey; Per Sandström

Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.


Oncogene | 2009

Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells

Bo Song; Yuan Wang; Yaguang Xi; Kenji Kudo; Skjalg Bruheim; Galina I. Botchkina; Elaine Gavin; Yu Wan; Andrea Formentini; Marko Kornmann; Øystein Fodstad; Jingfang Ju

In this study, high-throughput microRNA (miRNA) expression analysis revealed that the expression of miR-140 was associated with chemosensitivity in osteosarcoma tumor xenografts. Tumor cells ectopically transfected with miR-140 were more resistant to methotrexate and 5-fluorouracil (5-FU). Overexpression of miR-140 inhibited cell proliferation in both osteosarcoma U-2 OS (wt-p53) and colon cancer HCT 116 (wt-p53) cell lines, but less so in osteosarcoma MG63 (mut-p53) and colon cancer HCT 116 (null-p53) cell lines. miR-140 induced p53 and p21 expression accompanied with G1 and G2 phase arrest only in cell lines containing wild type of p53. Histone deacetylase 4 (HDAC4) was confirmed to be one of the important targets of miR-140. The expression of endogenous miR-140 was significantly elevated in CD133+hiCD44+hi colon cancer stem-like cells that exhibit slow proliferating rate and chemoresistance. Blocking endogenous miR-140 by locked nucleic acid-modified anti-miR partially sensitized resistant colon cancer stem-like cells to 5-FU treatment. Taken together, our findings indicate that miR-140 is involved in the chemoresistance by reduced cell proliferation through G1 and G2 phase arrest mediated in part through the suppression of HDAC4. miR-140 may be a candidate target to develop novel therapeutic strategy to overcome drug resistance.


Journal of Biological Chemistry | 2010

MicroRNA-125b Confers the Resistance of Breast Cancer Cells to Paclitaxel through Suppression of Pro-apoptotic Bcl-2 Antagonist Killer 1 (Bak1) Expression

Ming Zhou; Zixing Liu; Yuhua Zhao; Yan Ding; Hao Liu; Yaguang Xi; Wei Xiong; Guiyuan Li; Jianrong Lu; Øystein Fodstad; Adam I. Riker; Ming Tan

Paclitaxel (Taxol) is an effective chemotherapeutic agent for treatment of cancer patients. Despite impressive initial clinical responses, the majority of patients eventually develop some degree of resistance to Taxol-based therapy. The mechanisms underlying cancer cells resistance to Taxol are not fully understood. MicroRNA (miRNA) has emerged to play important roles in tumorigenesis and drug resistance. However, the interaction between the development of Taxol resistance and miRNA has not been previously explored. In this study we utilized a miRNA array to compare the differentially expressed miRNAs in Taxol-resistant and their Taxol-sensitive parental cells. We verified that miR-125b, miR-221, miR-222, and miR-923 were up-regulated in Taxol-resistant cancer cells by real-time PCR. We further investigated the role and mechanisms of miR-125b in Taxol resistance. We found that miR-125b was up-regulated in Taxol-resistant cells, causing a marked inhibition of Taxol-induced cytotoxicity and apoptosis and a subsequent increase in the resistance to Taxol in cancer cells. Moreover, we demonstrated that the pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) is a direct target of miR-125b. Down-regulation of Bak1 suppressed Taxol-induced apoptosis and led to an increased resistance to Taxol. Restoring Bak1 expression by either miR-125b inhibitor or re-expression of Bak1 in miR-125b-overexpressing cells recovered Taxol sensitivity, overcoming miR-125-mediated Taxol resistance. Taken together, our data strongly support a central role for miR-125b in conferring Taxol resistance through the suppression of Bak1 expression. This finding has important implications in the development of targeted therapeutics for overcoming Taxol resistance in a number of different tumor histologies.


Clinical Cancer Research | 2006

Differentially Regulated Micro-RNAs and Actively Translated Messenger RNA Transcripts by Tumor Suppressor p53 in Colon Cancer

Yaguang Xi; Reut Shalgi; Øystein Fodstad; Yitzhak Pilpel; Jingfang Ju

Purpose: The aim of this study was to investigate the role of p53 in regulating micro-RNA (miRNA) expression due to its function as a transcription factor. In addition, p53 may also affect other cellular mRNA gene expression at the translational level either via its mediated miRNAs or due to its RNA-binding function. Experimental Design: The possible interaction between p53 and miRNAs in regulating gene expression was investigated using human colon cancer HCT-116 (wt-p53) and HCT-116 (null-p53) cell lines. The effect of p53 on the expression of miRNAs was investigated using miRNA expression array and real-time quantitative reverse transcription-PCR analysis. Results: Our investigation indicated that the expression levels of a number of miRNAs were affected by wt-p53. Down-regulation of wt-p53 via small interfering RNA abolished the effect of wt-p53 in regulating miRNAs in HCT-116 (wt-p53) cells. Global sequence analysis revealed that over 46% of the 326 miRNA putative promoters contain potential p53-binding sites, suggesting that some of these miRNAs were potentially regulated directly by wt-p53. In addition, the expression levels of steady-state total mRNAs and actively translated mRNA transcripts were quantified by high-density microarray gene expression analysis. The results indicated that nearly 200 cellular mRNA transcripts were regulated at the posttranscriptional level, and sequence analysis revealed that some of these mRNAs may be potential targets of miRNAs, including translation initiation factor eIF-5A, eIF-4A, and protein phosphatase 1. Conclusion: To the best of our knowledge, this is the first report demonstrating that wt-p53 and miRNAs interact in influencing gene expression and providing insights of how p53 regulates genes at multiple levels via unique mechanisms.


International Journal of Cancer | 1999

Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells

Paal Ruud; Øystein Fodstad; Eivind Hovig

In many recent publications, it has been claimed that reverse transcriptase-polymerase chain reaction (RT-PCR) assays involving genes with tissue-restricted expression can be used for specific and sensitive detection of cancer cells in blood, bone marrow and lymph nodes. Many different target mRNAs have been evaluated for such purposes. One of the most extensively studied genes, CK19, is predominantly expressed in cells of epithelial origin and normally not at detectable levels in hematopoietic or lymphatic tissues. Based on previous reports on CK19 we wanted to establish a useful assay for detection of micrometastatic cells. RNA and DNA specimens extracted from peripheral blood nucleated cells of healthy volunteers, as well as cell lines positive and negative for CK19 expression, were used in nested RT-PCR assays. Using previously published primers, we found a novel pseudogene that shows a high degree of identity with the CK19 gene sequence, except for differences caused by 3 small deletions and a number of point mutations, resulting in termination codons and frameshifts. The gene has therefore no coding potential. Importantly, published primer sequences and reaction conditions used by several other groups to detect CK19 mRNA may have led to the amplification of this pseudogene. The data illustrate one of the problems that must be addressed in validating RT-PCR assays for micrometastasis detection, and it is suggested that previous work using CK19 as a marker should be reassessed in view of the present finding.


Molecular Cancer | 2010

Warburg effect in chemosensitivity: Targeting lactate dehydrogenase-A re-sensitizes Taxol-resistant cancer cells to Taxol

Ming-Ming Zhou; Yuhua Zhao; Yan Ding; Hao Liu; Zixing Liu; Øystein Fodstad; Adam I. Riker; Sushama Kamarajugadda; Jianrong Lu; Laurie B. Owen; Susan P. LeDoux; Ming-Ming Tan

BackgroundTaxol is one of the most effective chemotherapeutic agents for the treatment of patients with breast cancer. Despite impressive clinical responses initially, the majority of patients eventually develop resistance to Taxol. Lactate dehydrogenase-A (LDH-A) is one of the predominant isoforms of LDH expressed in breast tissue, which controls the conversion of pyruvate to lactate and plays an important role in glucose metabolism. In this study we investigated the role of LDH-A in mediating Taxol resistance in human breast cancer cells.ResultsTaxol-resistant subclones, derived from the cancer cell line MDA-MB-435, sustained continuous growth in high concentrations of Taxol while the Taxol-sensitive cells could not. The increased expression and activity of LDH-A were detected in Taxol-resistant cells when compared with their parental cells. The downregulation of LDH-A by siRNA significantly increased the sensitivity of Taxol-resistant cells to Taxol. A higher sensitivity to the specific LDH inhibitor, oxamate, was found in the Taxol-resistant cells. Furthermore, treating cells with the combination of Taxol and oxamate showed a synergistical inhibitory effect on Taxol-resistant breast cancer cells by promoting apoptosis in these cells.ConclusionLDH-A plays an important role in Taxol resistance and inhibition of LDH-A re-sensitizes Taxol-resistant cells to Taxol. This supports that Warburg effect is a property of Taxol resistant cancer cells and may play an important role in the development of Taxol resistance. To our knowledge, this is the first report showing that the increased expression of LDH-A plays an important role in Taxol resistance of human breast cancer cells. This study provides valuable information for the future development and use of targeted therapies, such as oxamate, for the treatment of patients with Taxol-resistant breast cancer.


International Journal of Cancer | 1997

Differential expression patterns of S100a2, S100a4 and S100a6 during progression of human malignant melanoma

Gunhild M. Mælandsmo; Vivi Ann Flørenes; Turid Mellingsaeter; Eivind Hovig; Robert S. Kerbel; Øystein Fodstad

Three members of the S100 gene family, S100A2, S100A4 and S100A6, have been suggested to be associated with cancer development and metastasis. To study their involvement in the tumorigenesis of human melanoma, we examined the mRNA expression levels of the 3 genes in 45 melanoma metastases and in 20 benign nevi. Interestingly, whereas none of the metastases expressed S100A2 mRNA, and the expression level was low in 6 cell lines established from primary melanomas, all nevi showed moderate to high expression levels. Our results suggest that loss of S100A2 gene expression may be an early event in melanoma development. A significant correlation was found between the expression of S100A6 in melanoma metastases and both the survival time of the patients and the thickness of the corresponding primary tumors. For the S100A4 gene, however, no relationship was found between gene expression and clinical parameters of melanoma malignancy. The observed differences in expression patterns of the 3 S100 genes suggest distinct roles of their products in melanoma tumorigenesis and/or metastasis, and the results encourage studies to evaluate the potential value of using S100A2 and S100A6 expression levels as markers in the clinical management of melanoma. Int. J. Cancer 74:464–469, 1997.


Stem Cells | 2008

The Stem Cell‐Associated Antigen CD133 (Prominin‐1) Is a Molecular Therapeutic Target for Metastatic Melanoma

Germana Rappa; Øystein Fodstad; Aurelio Lorico

CD133 (Prominin‐1) is considered the most important cancer stem cell (CSC)‐associated marker identified so far, with increased expression in the CSC fraction of a large variety of human malignancies, including melanoma. Here we investigated the effects of CD133 downregulation in vitro and in vivo in human metastatic melanoma. The average number of CD133 molecules on the cell surface of FEMX‐I melanoma cells was decreased by 8.7‐fold and 1.8‐fold using two different short hairpin RNAs. Downregulation of CD133, confirmed by immunocytochemistry, Western blotting, microarray analysis, and reverse transcription‐polymerase chain reaction, resulted in slower cell growth, reduced cell motility, and decreased capacity to form spheroids under stem cell‐like growth conditions. Clonal analysis revealed that the reduction in growth rate was proportional to the extent of CD133 downregulation. Monoclonal antibodies directed against two different epitopes of the CD133 protein induced a specific, dose‐dependent cytotoxic effect in FEMX‐I cells. The downregulation of CD133 severely reduced the capacity of the cells to metastasize, particularly to the spinal cord. In the CD133 downregulated cells, microarray analysis revealed expression changes for only 143 annotated genes (76 up‐ and 67 downregulated). Ten of the 76 upregulated genes coded for Wnt inhibitors, suggesting an interaction between CD133 and the canonical Wnt pathway. We conclude that CD133, in addition to its role as a CSC marker, is an important therapeutic target for metastatic melanoma and, potentially, for other CD133‐expressing cancer types.


Cancer Research | 2011

Overcoming Trastuzumab Resistance in Breast Cancer by Targeting Dysregulated Glucose Metabolism

Yuhua Zhao; Hao Liu; Zixing Liu; Yan Ding; Susan P. LeDoux; Glenn L. Wilson; Richard Voellmy; Yifeng Lin; Wensheng Lin; Rita Nahta; Bolin Liu; Øystein Fodstad; Jieqing Chen; Yun Wu; Janet E. Price; Ming Tan

Trastuzumab shows remarkable efficacy in treatment of ErbB2-positive breast cancers when used alone or in combination with other chemotherapeutics. However, acquired resistance develops in most treated patients, necessitating alternate treatment strategies. Increased aerobic glycolysis is a hallmark of cancer and inhibition of glycolysis may offer a promising strategy to preferentially kill cancer cells. In this study, we investigated the antitumor effects of trastuzumab in combination with glycolysis inhibitors in ErbB2-positive breast cancer. We found that trastuzumab inhibits glycolysis via downregulation of heat shock factor 1 (HSF1) and lactate dehydrogenase A (LDH-A) in ErbB2-positive cancer cells, resulting in tumor growth inhibition. Moreover, increased glycolysis via HSF1 and LDH-A contributes to trastuzumab resistance. Importantly, we found that combining trastuzumab with glycolysis inhibition synergistically inhibited trastuzumab-sensitive and -resistant breast cancers in vitro and in vivo, due to more efficient inhibition of glycolysis. Taken together, our findings show how glycolysis inhibition can dramatically enhance the therapeutic efficacy of trastuzumab in ErbB2-positive breast cancers, potentially useful as a strategy to overcome trastuzumab resistance.


Oncogene | 2009

Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth

Yuhua Zhao; Ming Zhou; Hao Liu; Yan Ding; H. T. Khong; Dihua Yu; Øystein Fodstad; Ming Tan

ErbB2 has been shown to activate signaling molecules that may regulate glucose metabolism. However, there is no evidence reported to directly link ErbB2 to glycolysis, and the mechanism underlying ErbB2-enhanced glycolysis is poorly understood. In this study, we investigated the role and mechanism of ErbB2 in regulating glycolysis. We found that ErbB2-overexpressing cells possessed a significantly higher level of glycolysis when compared to the ErbB2-low-expressing cells, and the downregulation of ErbB2 markedly decreased glycolysis. Overexpression of ErbB2 increased the expression of glycolysis-regulating molecules lactate dehydrogenase A (LDH-A) and heat shock factor 1 (HSF1). ErbB2 activated HSF1, indicated by the increased HSF1 trimer formation, and promoted HSF1 protein synthesis. HSF1 bound to LDH-A promoter and the downregulation of HSF1 reduced the expression of LDH-A and subsequently decreased cancer cell glycolysis and growth. Moreover, the glycolysis inhibitors, 2-deoxyglucose and oxamate, selectively inhibited the growth of ErbB2-overexpressing cells. Taken together, this study shows that in human breast cancer cells, ErbB2 promotes glycolysis at least partially through the HSF1-mediated upregulation of LDH-A. This pathway may have a major role in regulating glucose metabolism in breast cancer cells. These novel findings have important implications for the design of new approaches to target ErbB2-overexpressing breast cancers.

Collaboration


Dive into the Øystein Fodstad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Hansen Ree

Akershus University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steinar Aamdal

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge