Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ozden Sanal is active.

Publication


Featured researches published by Ozden Sanal.


Cell | 2000

Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2).

Patrick Revy; Taro Muto; Yves Levy; Frédéric Geissmann; Alessandro Plebani; Ozden Sanal; Nadia Catalan; Monique Forveille; Rémi Dufourcq-Lagelouse; Andrew R. Gennery; Ilhan Tezcan; Ersoy F; Hülya Kayserili; Alberto G. Ugazio; Nicole Brousse; Masamichi Muramatsu; Luigi D. Notarangelo; Kazuo Kinoshita; Tasuku Honjo; Alain Fischer; Anne Durandy

The activation-induced cytidine deaminase (AID) gene, specifically expressed in germinal center B cells in mice, is a member of the cytidine deaminase family. We herein report mutations in the human counterpart of AID in patients with the autosomal recessive form of hyper-IgM syndrome (HIGM2). Three major abnormalities characterize AID deficiency: (1) the absence of immunoglobulin class switch recombination, (2) the lack of immunoglobulin somatic hypermutations, and (3) lymph node hyperplasia caused by the presence of giant germinal centers. The phenotype observed in HIGM2 patients (and in AID-/- mice) demonstrates the absolute requirement for AID in several crucial steps of B cell terminal differentiation necessary for efficient antibody responses.


Cell | 2001

Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency.

Despina Moshous; Isabelle Callebaut; Régina de Chasseval; Barbara Corneo; Marina Cavazzana-Calvo; Françoise Le Deist; Ilhan Tezcan; Ozden Sanal; Yves Bertrand; Noël Philippe; Alain Fischer; Jean-Pierre de Villartay

The V(D)J recombination process insures the somatic diversification of immunoglobulin and antigen T cell receptor encoding genes. This reaction is initiated by a DNA double-strand break (dsb), which is resolved by the ubiquitously expressed DNA repair machinery. Human T-B-severe combined immunodeficiency associated with increased cellular radiosensitivity (RS-SCID) is characterized by a defect in the V(D)J recombination leading to an early arrest of both B and T cell maturation. We previously mapped the disease-related locus to the short arm of chromosome 10. We herein describe the cloning of the gene encoding a novel protein involved in V(D)J recombination/DNA repair, Artemis, whose mutations cause human RS-SCID. Protein sequence analysis strongly suggests that Artemis belongs to the metallo-beta-lactamase superfamily.


Cell | 2006

Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly

Dietke Buck; Laurent Malivert; Régina de Chasseval; Anne Barraud; Marie-Claude Fondanèche; Ozden Sanal; Alessandro Plebani; Jean-Louis Stephan; Markus Hufnagel; Françoise Le Deist; Alain Fischer; Anne Durandy; Jean-Pierre de Villartay; Patrick Revy

DNA double-strand breaks (DSBs) occur at random upon genotoxic stresses and represent obligatory intermediates during physiological DNA rearrangement events such as the V(D)J recombination in the immune system. DSBs, which are among the most toxic DNA lesions, are preferentially repaired by the nonhomologous end-joining (NHEJ) pathway in higher eukaryotes. Failure to properly repair DSBs results in genetic instability, developmental delay, and various forms of immunodeficiency. Here we describe five patients with growth retardation, microcephaly, and immunodeficiency characterized by a profound T+B lymphocytopenia. An increased cellular sensitivity to ionizing radiation, a defective V(D)J recombination, and an impaired DNA-end ligation process both in vivo and in vitro are indicative of a general DNA repair defect in these patients. All five patients carry mutations in the Cernunnos gene, which was identified through cDNA functional complementation cloning. Cernunnos/XLF represents a novel DNA repair factor essential for the NHEJ pathway.


The Journal of Pediatrics | 1997

Clinical spectrum of X-linked hyper-IgM syndrome

Jacov Levy; Teresa Espanol-Boren; Carolin Thomas; Alain Fischer; Pier-Angelo Tovo; Pierre Bordigoni; Igor B. Resnick; Anders Fasth; Maija Baer; Lina Gomez; Edward Sanders; Marie-Dominique Tabone; Dominique Plantaz; Amos Etzioni; Virginia Monafo; Mario Abinun; Lennart Hammarström; Tore G. Abrahamsen; Allison Jones; Adam Finn; Timo Klemola; Esther DeVries; Ozden Sanal; Manuel C. Peitsch; Luigi D. Notarangelo

We report the clinical and immunologic features and outcome in 56 patients with X-linked hyper-IgM syndrome, a disorder caused by mutations in the CD40 ligand gene. Upper and lower respiratory tract infections (the latter frequently caused by Pneumocystis carinii), chronic diarrhea, and liver involvement (both often associated with Cryptosporidium infection) were common. Many patients had chronic neutropenia associated with oral and rectal ulcers. The marked prevalence of infections caused by intracellular pathogens suggests some degree of impairment of cell-mediated immunity. Although lymphocyte counts and in vitro proliferation to mitogens were normal, a defective in vitro proliferative response to antigens was observed in some patients, and additional defects of cell-mediated immunity may be presumed on the basis of current knowledge of CD40-ligand function. All patients received regular infusions of immunoglobulins. Four patients underwent liver transplantation because of sclerosing cholangitis, which relapsed in there. Three patients underwent bone marrow transplantation. Thirteen patients (23%) died of infection and/or liver disease. X-linked hyper-IgM syndrome, once considered a clinical variant of hypogammaglobulinemia, is a severe immunodeficiency with significant cellular involvement and a high mortality rate.


Journal of Experimental Medicine | 2008

Mutations in STAT3 and IL12RB1 impair the development of human IL-17–producing T cells

Ludovic de Beaucoudrey; Anne Puel; Aurélie Cobat; Pegah Ghandil; Maya Chrabieh; Jacqueline Feinberg; Horst von Bernuth; Arina Samarina; Lucile Jannière; Claire Fieschi; Jean-Louis Stephan; Catherine Boileau; Stanislas Lyonnet; Guillaume Jondeau; Valérie Cormier-Daire; Martine Le Merrer; Cyrille Hoarau; Yvon Lebranchu; Olivier Lortholary; Marie-Olivia Chandesris; François Tron; Eleonora Gambineri; Lucia Bianchi; Carlos Rodríguez-Gallego; Simona Eva Zitnik; Júlia Vasconcelos; Margarida Guedes; Artur Bonito Vitor; László Maródi; Helen Chapel

The cytokines controlling the development of human interleukin (IL) 17–producing T helper cells in vitro have been difficult to identify. We addressed the question of the development of human IL-17–producing T helper cells in vivo by quantifying the production and secretion of IL-17 by fresh T cells ex vivo, and by T cell blasts expanded in vitro from patients with particular genetic traits affecting transforming growth factor (TGF) β, IL-1, IL-6, or IL-23 responses. Activating mutations in TGFB1, TGFBR1, and TGFBR2 (Camurati-Engelmann disease and Marfan-like syndromes) and loss-of-function mutations in IRAK4 and MYD88 (Mendelian predisposition to pyogenic bacterial infections) had no detectable impact. In contrast, dominant-negative mutations in STAT3 (autosomal-dominant hyperimmunoglobulin E syndrome) and, to a lesser extent, null mutations in IL12B and IL12RB1 (Mendelian susceptibility to mycobacterial diseases) impaired the development of IL-17–producing T cells. These data suggest that IL-12Rβ1– and STAT-3–dependent signals play a key role in the differentiation and/or expansion of human IL-17–producing T cell populations in vivo.


American Journal of Human Genetics | 1999

Splicing Defects in the Ataxia-Telangiectasia Gene, ATM: Underlying Mutations and Consequences

Sharon N. Teraoka; Milhan Telatar; Sara G. Becker-Catania; Teresa Liang; Suna Önengüt; Asli Tolun; Luciana Chessa; Ozden Sanal; Eva Bernatowska; Richard A. Gatti; Patrick Concannon

Mutations resulting in defective splicing constitute a significant proportion (30/62 [48%]) of a new series of mutations in the ATM gene in patients with ataxia-telangiectasia (AT) that were detected by the protein-truncation assay followed by sequence analysis of genomic DNA. Fewer than half of the splicing mutations involved the canonical AG splice-acceptor site or GT splice-donor site. A higher percentage of mutations occurred at less stringently conserved sites, including silent mutations of the last nucleotide of exons, mutations in nucleotides other than the conserved AG and GT in the consensus splice sites, and creation of splice-acceptor or splice-donor sites in either introns or exons. These splicing mutations led to a variety of consequences, including exon skipping and, to a lesser degree, intron retention, activation of cryptic splice sites, or creation of new splice sites. In addition, 5 of 12 nonsense mutations and 1 missense mutation were associated with deletion in the cDNA of the exons in which the mutations occurred. No ATM protein was detected by western blotting in any AT cell line in which splicing mutations were identified. Several cases of exon skipping in both normal controls and patients for whom no underlying defect could be found in genomic DNA were also observed, suggesting caution in the interpretation of exon deletions observed in ATM cDNA when there is no accompanying identification of genomic mutations.


Science | 2012

Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency.

Dusan Bogunovic; Minji Byun; Larissa A. Durfee; Avinash Abhyankar; Ozden Sanal; Davood Mansouri; Sandra Salem; Irena Radovanovic; Audrey V. Grant; Parisa Adimi; Nahal Mansouri; Satoshi Okada; Vanessa L. Bryant; Xiao Fei Kong; Alexandra Y. Kreins; Marcela Moncada Velez; Bertrand Boisson; Soheila Khalilzadeh; U. Ozcelik; Ilad Alavi Darazam; John W. Schoggins; Charles M. Rice; Saleh Al-Muhsen; Marcel A. Behr; Guillaume Vogt; Anne Puel; Jacinta Bustamante; Philippe Gros; Jon M. Huibregtse; Laurent Abel

Tuberculosis Vaccine Conundrum Some children experience severe clinical disease when they are vaccinated against tuberculosis, an attenuated live vaccine that is normally innocuous in humans. Several germline mutations have been identified that account for this susceptibility, and now Bogunovic et al. (p. 1684, published online 2 August) add another to the list—ISG15. Uncovering this mutation, which is inherited in an autosomal recessive manner, was a surprise because studies with mice deficient in ISG15 showed enhanced susceptibility to some viral, but not bacterial, infections. Nevertheless, patients lacking ISG15 were not able to produce adequate amounts of interferon-γ, a cytokine critical for clearance of the bacteria. A mutation that accounts for adverse reactions to the Bacille Calmette-Guérin vaccine against tuberculosis is identified. ISG15 is an interferon (IFN)-α/β–inducible, ubiquitin-like intracellular protein. Its conjugation to various proteins (ISGylation) contributes to antiviral immunity in mice. Here, we describe human patients with inherited ISG15 deficiency and mycobacterial, but not viral, diseases. The lack of intracellular ISG15 production and protein ISGylation was not associated with cellular susceptibility to any viruses that we tested, consistent with the lack of viral diseases in these patients. By contrast, the lack of mycobacterium-induced ISG15 secretion by leukocytes—granulocyte, in particular—reduced the production of IFN-γ by lymphocytes, including natural killer cells, probably accounting for the enhanced susceptibility to mycobacterial disease. This experiment of nature shows that human ISGylation is largely redundant for antiviral immunity, but that ISG15 plays an essential role as an IFN-γ–inducing secreted molecule for optimal antimycobacterial immunity.


Journal of Clinical Investigation | 2003

Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1)

Gaël Ménasché; Chen Hsuan Ho; Ozden Sanal; Jérôme Feldmann; Ilhan Tezcan; Fügen Ersoy; Anne Houdusse; Alain Fischer; Geneviève de Saint Basile

Griscelli syndrome (GS) is a rare autosomal recessive disorder that associates hypopigmentation, characterized by a silver-gray sheen of the hair and the presence of large clusters of pigment in the hair shaft, and the occurrence of either a primary neurological impairment or a severe immune disorder. Two different genetic forms, GS1 and GS2, respectively, account for the mutually exclusive neurological and immunological phenotypes. Mutations in the gene encoding the molecular motor protein Myosin Va (MyoVa) cause GS1 and the dilute mutant in mice, whereas mutations in the gene encoding the small GTPase Rab27a are responsible for GS2 and the ashen mouse model. We herein present genetic and functional evidence that a third form of GS (GS3), whose expression is restricted to the characteristic hypopigmentation of GS, results from mutation in the gene that encodes melanophilin (Mlph), the ortholog of the gene mutated in leaden mice. We also show that an identical phenotype can result from the deletion of the MYO5A F-exon, an exon with a tissue-restricted expression pattern. This spectrum of GS conditions pinpoints the distinct molecular pathways used by melanocytes, neurons, and immune cells in secretory granule exocytosis, which in part remain to be unraveled.


Nature Genetics | 2002

Genetics, cytokines and human infectious disease: lessons from weakly pathogenic mycobacteria and salmonellae

Tom H. M. Ottenhoff; Frank A. W. Verreck; Elgin G. R. Lichtenauer-Kaligis; Marieke A. Hoeve; Ozden Sanal; Jaap T. van Dissel

Host genetic factors are important in determining the outcome of infections caused by intracellular pathogens, including mycobacteria and salmonellae, but until now have been poorly characterized. Recently, some individuals with severe infections due to otherwise weakly pathogenic mycobacteria (non-tuberculous mycobacteria or Mycobacterium bovis bacille Calmette-Guérin) or Salmonella species have been shown to be unable to produce or respond to interferon-γ. This inability results from mutations in any of five genes encoding essential proteins of the type 1 cytokine cascade: interleukin-12p40, interleukin-12Rβ1, interferon-γR1, interferon-γR2 or STAT1. Ten syndromes have thus far been identified. Recent insights in genetically controlled host defense and susceptibility to mycobacterial disease are discussed.


Nature | 2015

Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation

Xianqin Zhang; Dusan Bogunovic; Béatrice Payelle-Brogard; Véronique Francois-Newton; Scott D. Speer; Chao Yuan; Stefano Volpi; Zhi Li; Ozden Sanal; Davood Mansouri; Ilhan Tezcan; Gillian I. Rice; Chunyuan Chen; Nahal Mansouri; Seyed Alireza Mahdaviani; Yuval Itan; Bertrand Boisson; Satoshi Okada; Lu Zeng; Xing Wang; Hui Jiang; Wenqiang Liu; Tiantian Han; Delin Liu; Tao Ma; Bo Wang; Mugen Liu; Jing Yu Liu; Wang Q; Dilek Yalnizoglu

Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi–Goutières syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients’ cells prevents the accumulation of USP18, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation.

Collaboration


Dive into the Ozden Sanal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ersoy F

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ayse Metin

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leman Yel

University of California

View shared research outputs
Top Co-Authors

Avatar

Alain Fischer

Necker-Enfants Malades Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge