Ozlem Akman
Istanbul Bilim University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ozlem Akman.
Epilepsy Research | 2010
Ozlem Akman; Tamer Demiralp; Nurbay Ates; Filiz Onat
The inbred Wistar Albino Glaxo Rats from Rijswijk (WAG/Rij) and the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are well-validated genetic models of absence epilepsy. Although they share similar characteristics including the spike-and-wave discharges (SWDs) in the EEG, some differences have been reported between both strains. This study aimed a systematic and detailed comparison of the SWD patterns of both strains in terms of the intensity, frequency and waveform morphology of the discharges by using exactly the same measurement and analysis techniques. The number, cumulative total duration and mean duration of SWDs were significantly higher in GAERS compared to WAG/Rij, while the discharge frequency was higher in the WAG/Rij. Furthermore, SWDs spectra and average SWD waveforms indicated that a single cycle of the SWD contains more energy in faster components such as spike and late positive transient in the GAERS. Additionally, WAG/Rij exhibited a significantly higher power between 8 and 14 Hz during the pre-SWD period. These clear phenomenological differences in the EEGs of both animal models suggest that these variables may represent basic phenotypic features of SWDs that should be sought after in the future studies that explore the genetic and molecular basis of absence epilepsy.
Neurobiology of Disease | 2014
Ozlem Akman; Solomon L. Moshé; Aristea S. Galanopoulou
Seizures are very common in the early periods of life and are often associated with poor neurologic outcome in humans. Animal studies have provided evidence that early life seizures may disrupt neuronal differentiation and connectivity, signaling pathways, and the function of various neuronal networks. There is growing experimental evidence that many signaling pathways, like GABAA receptor signaling, the cellular physiology and differentiation, or the functional maturation of certain brain regions, including those involved in seizure control, mature differently in males and females. However, most experimental studies of early life seizures have not directly investigated the importance of sex on the consequences of early life seizures. The sexual dimorphism of the developing brain raises the question that early seizures could have distinct effects in immature females and males that are subjected to seizures. We will first discuss the evidence for sex-specific features of the developing brain that could be involved in modifying the susceptibility and consequences of early life seizures. We will then review how sex-related biological factors could modify the age-specific consequences of induced seizures in the immature animals. These include signaling pathways (e.g., GABAA receptors), steroid hormones, growth factors. Overall, there are very few studies that have specifically addressed seizure outcomes in developing animals as a function of sex. The available literature indicates that a variety of outcomes (histopathological, behavioral, molecular, epileptogenesis) may be affected in a sex-, age-, region-specific manner after seizures during development. Obtaining a better understanding for the gender-related mechanisms underlying epileptogenesis and seizure comorbidities will be necessary to develop better gender and age appropriate therapies.
Neuropharmacology | 2011
Pervin Iseri; Ayşe Karson; Kemal M. Gullu; Ozlem Akman; Sibel Kokturk; Melda Yardýmoglu; Sarp Ertürk; Nurbay Ates
Essential tremor (ET) is one of the most common and most disabling movement disorders among adults. The drug treatment of ET remains unsatisfactory. Additional therapies are required for patients with inadequate response or intolerable side effects. The current study aims to investigate the anti-tremogenic and neuroprotective effects of memantine (NMDA receptor antagonist) on the harmaline model of transient action tremor. The effects of memantine were further compared with ethanol. Three separate groups of male Wistar rats were injected either with saline, ethanol (1.5 gr/kg), or memantine (5 mg/kg) 15 min prior to a single intraperitoneal injection of harmaline (20 mg/kg). Tremor and locomotion were evaluated by a custom-built tremor and locomotion analysis system. After 24 h of harmaline injection, cellular viability, and apoptosis were assessed using crystal violet staining, and caspase-3 immunostaining, respectively. Harmaline caused neuronal cell loss and caspase-3 mediated apoptosis in cerebellar granular and purkinje cells as well as the inferior olivary neurons. Despite a reduction in tremor intensity and duration with ethanol, this compound resulted in cell loss in cerebellum and olivary nucleus. Memantine exhibited neuroprotective efficacy on cerebellar and inferior olivary neurons albeit weaker anti-tremor effect compared to ethanol. In conclusion, anti-tremogenic and neuroprotective effects do not necessarily overlap. Memantine is a potential treatment for ET particularly given its neuroprotective efficacy.
CNS Neuroscience & Therapeutics | 2015
Ozlem Akman; Solomon L. Moshé; Aristea S. Galanopoulou
Neonatal status epilepticus (SE) is often associated with adverse cognitive and epilepsy outcomes. We investigate the effects of three episodes of kainic acid‐induced SE (3KA‐SE) and maternal separation in immature rats on subsequent learning, seizure susceptibility, and consequences, and the anticonvulsant effects of phenobarbital, according to sex, type, and age at early life (EL) event.
Neuroscience Letters | 2010
Ozlem Akman; Ayşe Karson; Rezzan Aker; Nurbay Ates; Filiz Onat
Two genetic models of absence epilepsy, GAERS and WAG/Rij rat strains, are resistant to progression of partial seizures induced by amygdaloid or hippocampal kindling. Perirhinal cortex is one of the crucial areas for the secondary generalization of partial seizures. Therefore we focused on perirhinal cortical kindling in both epileptic rat strains and examined whether the resistance to limbic epilepsy is restricted to the amygdala and hippocampus or whether it can also occur with perirhinal cortical kindling. The mean afterdischarge (AD) thresholds were significantly higher in WAG/Rij and GAERS compared to the Wistar rats. Analysis of the rate of perirhinal cortical kindling for the 3 strains indicated highly significant differences. The mean number of stimulations for the development of the first stage 2, 3, 4 or 5 seizures was significantly higher in WAG/Rij and GAERS groups than in Wistar rats. Further, the cumulative total duration and number of SWDs increased during the first epoch of the post-stimulation period at the first stage 2 and 4/5 seizures in the WAG/Rij and GAERS rats compared to the pre-stimulation period. The higher AD threshold and delays to all stages of kindling in WAG/Rij and GAERS indicate that the perirhinal cortex is a part of the circuits involved in the kindling resistance in genetic models of absence epilepsy.
Journal of Molecular Neuroscience | 2015
Gönül Gürol; Duygu Ozel Demiralp; Ayça Kasapoğlu Yılmaz; Ozlem Akman; Nurbay Ates; Ayşe Karson
The aim of this study was to investigate cellular proteins in the pathogenesis of the genetic rat model of absence epilepsy. Protein spots were identified with peptide mass fingerprinting analysis using matrix-assisted laser desorption ionization time of flight mass spectrometry. Data were gathered from the frontoparietal cortex and thalamus of Wistar Albino Glaxo/Rij (WAG/Rij) and Wistar by using two-dimensional gel electrophoresis (2D-PAGE). Six proteins (Clathrin light chain-A protein, Transmembrane EMP24 Domain-Containing Protein, Stathmin-4, Myosin Light Chain4, Rheb, phosphoserine phosphatase) were found to be differentially expressed in the frontoparietal cortex of WAG/Rij and Wistar rats in both age groups. Another set of six proteins (Protein FAM89A and Oasl1, Gemin2, NuDEL1, Pur-beta, 3-alpha HSD) were found to be differentially expressed in the thalamus of WAG/Rij and Wistar rats. Findings from the frontoparietal cortex suggest the presence of altered serine metabolism and increased vesicular trafficking in the frontoparietal cortex of WAG/Rij rats compared with Wistar rats. These differences in the protein levels might reflect the crucial role of these proteins and related pathways in the generation of absence seizures. In the thalamic specimens, age-dependent changes in protein expression were remarkable, suggesting that this phenomenon may be a precursor or a consequence of absence seizures. Our findings further highlight the potential role of the mTOR signaling pathway in absence epilepsy.
Epilepsia | 2015
Ozlem Akman; Medine I. Gulcebi; Nihan Çarçak; Sema Ketenci Ozatman; Tugba Eryigit; Solomon L. Moshé; Aristea S. Galanopoulou; Filiz Onat
Genetic Absence Epilepsy Rats from Strasbourg (GAERS) show a resistance to secondary generalization of focal limbic seizures evoked by kindling. The substantia nigra pars reticulata (SNR) is involved in the propagation and modulation of seizures in kindling. We first examined the role of the SNRanterior and SNRposterior subregions in the resistance to the development of kindling in GAERS. Subsequently, to determine whether kindling resistance relates to differential sensitivity of γ‐aminobutyric acid γ‐aminobutyric acid (GABA)ergic or dopaminergic SNR neurons to kindling, we studied the effects of kindling‐inducing stimulations on parvalbumin (PRV; GABAergic neuron marker) or tyrosine hydroxylase (TH; dopaminergic neuron marker) immunoreactivity (ir), respectively, in GAERS and in nonepileptic control (NEC) Wistar rats that lack kindling resistance.
Epilepsia Open | 2018
Ozlem Akman; Yogendra H. Raol; Stéphane Auvin; Miguel A. Cortez; Hana Kubova; Marco de Curtis; Akio Ikeda; F. Edward Dudek; Aristea S. Galanopoulou
The use of immature rodents to study physiologic aspects of cortical development requires high‐quality recordings electroencephalography (EEG) with simultaneous video recording (vEEG) of behavior. Normative developmental vEEG data in control animals are fundamental for the study of abnormal background activity in animal models of seizures or other neurologic disorders. Electrical recordings from immature, freely behaving rodents can be particularly difficult because of the small size of immature rodents, their thin and soft skull, interference with the recording apparatus by the dam, and other technical challenges. In this report of the TASK1 Working Group 2 (WG2) of the International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force, we provide suggestions that aim to optimize future vEEG recordings from immature rodents, as well as their interpretation. We focus on recordings from immature rodents younger than 30 days old used as experimental controls, because the quality and correct interpretation of such recordings is important when interpreting the vEEG results of animals serving as models of neurologic disorders. We discuss the technical aspects of such recordings and compare tethered versus wireless approaches. We also summarize the appearance of common artifacts and various patterns of electrical activity seen in young rodents used as controls as a function of behavioral state, age, and (where known) sex and strain. The information herein will hopefully help improve the methodology of vEEG recordings from immature rodents and may lead to results and interpretations that are more consistent across studies from different laboratories.
Current Proteomics | 2016
Ayca Dilara Y|lmaz; Gonul Gurol Ciftci; Duygu Ozel Demiralp; Naşit İğci; Ozlem Akman; Nurbay Ates; Ayşe Karson
Archive | 2013
Nihan Çarçak; Ozlem Akman; O. Carter Snead; Filiz Onat