Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ozlem Bozdagi is active.

Publication


Featured researches published by Ozlem Bozdagi.


Cell | 2011

Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation

Akinobu Suzuki; Sarah A. Stern; Ozlem Bozdagi; George W. Huntley; Ruth H. Walker; Pierre J. Magistretti; Cristina M. Alberini

We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.


Neuron | 2000

Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation.

Ozlem Bozdagi; Weisong Shan; Hidekazu Tanaka; Deanna L. Benson; George W. Huntley

It is an open question whether new synapses form during hippocampal LTP. Here, we show that late-phase LTP (L-LTP) is associated with a significant increase in numbers of synaptic puncta identified by synaptophysin and N-cadherin, an adhesion protein involved in synapse formation during development. During potentiation, protein levels of N-cadherin are significantly elevated and N-cadherin dimerization is enhanced. The increases in synaptic number and N-cadherin levels are dependent on cAMP-dependent protein kinase (PKA) and protein synthesis, both of which are also required for L-LTP. Blocking N-cadherin adhesion prevents the induction of L-LTP, but not the early-phase of LTP (E-LTP). Our data suggest that N-cadherin is synthesized during the induction of L-LTP and recruited to newly forming synapses. N-cadherin may play a critical role in L-LTP by holding nascent pre-and postsynaptic membranes in apposition, enabling incipient synapses to acquire function and contribute to potentiation.


The Journal of Neuroscience | 2006

Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory

Vanja Nagy; Ozlem Bozdagi; Anna Matynia; Marcin Balcerzyk; Pawel Okulski; Joanna Dzwonek; Rui M. Costa; Alcino J. Silva; Leszek Kaczmarek; George W. Huntley

Matrix metalloproteinases (MMPs) are extracellular proteases that have well recognized roles in cell signaling and remodeling in many tissues. In the brain, their activation and function are customarily associated with injury or pathology. Here, we demonstrate a novel role for MMP-9 in hippocampal synaptic physiology, plasticity, and memory. MMP-9 protein levels and proteolytic activity are rapidly increased by stimuli that induce late-phase long-term potentiation (L-LTP) in area CA1. Such regulation requires NMDA receptors and protein synthesis. Blockade of MMP-9 pharmacologically prevents induction of L-LTP selectively; MMP-9 plays no role in, nor is regulated during, other forms of short-term synaptic potentiation or long-lasting synaptic depression. Similarly, in slices from MMP-9 null-mutant mice, hippocampal LTP, but not long-term depression, is impaired in magnitude and duration; adding recombinant active MMP-9 to null-mutant slices restores the magnitude and duration of LTP to wild-type levels. Activated MMP-9 localizes in part to synapses and modulates hippocampal synaptic physiology through integrin receptors, because integrin function-blocking reagents prevent an MMP-9-mediated potentiation of synaptic signal strength. The fundamental importance of MMP-9 function in modulating hippocampal synaptic physiology and plasticity is underscored by behavioral impairments in hippocampal-dependent memory displayed by MMP-9 null-mutant mice. Together, these data reveal new functions for MMPs in synaptic and behavioral plasticity.


Neuron | 2000

Molecular Modification of N-Cadherin in Response to Synaptic Activity

Hidekazu Tanaka; Weisong Shan; Greg R. Phillips; Kirsten Arndt; Ozlem Bozdagi; Lawrence Shapiro; George W. Huntley; Deanna L. Benson; David R. Colman

The relationship between adhesive interactions across the synaptic cleft and synaptic function has remained elusive. At certain CNS synapses, pre- to postsynaptic adhesion is mediated at least in part by neural (N-) cadherin. Here, we demonstrate that upon depolarization of hippocampal neurons in culture by K+ treatment, or application of NMDA or alpha-latrotoxin, synaptic N-cadherin dimerizes and becomes markedly protease resistant. These properties are indices of strong, stable, enhanced cadherin-mediated intercellular adhesion. N-cadherin retained protease resistance for at least 2 hr after recovery, while other surface molecules, including other cadherins, were completely degraded. The acquisition of protease resistance and dimerization of N-cadherin is not dependent on new protein synthesis, nor is it accompanied by internalization of N-cadherin. By immunocytochemistry, we found that high K+ selectively induces surface dispersion of N-cadherin, which, after recovery, returns to synaptic puncta. N-cadherin dispersion under K+ treatment parallels the rapid expansion of the presynaptic membrane consequent to the massive vesicle fusion that occurs with this type of depolarization. In contrast, with NMDA application, N-cadherin does not disperse but does acquire enhanced protease resistance and dimerizes. Our data strongly suggest that synaptic adhesion is dynamically and locally controlled, and modulated by synaptic activity.


Molecular Autism | 2010

Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication

Ozlem Bozdagi; Takeshi Sakurai; Danae Papapetrou; Xiao-bin Wang; Dara L. Dickstein; Nagahide Takahashi; Yuji Kajiwara; Mu Qun Yang; Adam M. Katz; Maria Luisa Scattoni; Mark J. Harris; Roheeni Saxena; Jill L. Silverman; Jacqueline N. Crawley; Qingfeng Zhou; Patrick R. Hof; Joseph D. Buxbaum

BackgroundSHANK3 is a protein in the core of the postsynaptic density (PSD) and has a critical role in recruiting many key functional elements to the PSD and to the synapse, including components of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA), metabotropic glutamate (mGlu) and N-methyl-D-aspartic acid (NMDA) glutamate receptors, as well as cytoskeletal elements. Loss of a functional copy of the SHANK3 gene leads to the neurobehavioral manifestations of 22q13 deletion syndrome and/or to autism spectrum disorders. The goal of this study was to examine the effects of haploinsufficiency of full-length Shank3 in mice, focusing on synaptic development, transmission and plasticity, as well as on social behaviors, as a model for understanding SHANK3 haploinsufficiency in humans.MethodsWe used mice with a targeted disruption of Shank3 in which exons coding for the ankyrin repeat domain were deleted and expression of full-length Shank3 was disrupted. We studied synaptic transmission and plasticity by multiple methods, including patch-clamp whole cell recording, two-photon time-lapse imaging and extracellular recordings of field excitatory postsynaptic potentials. We also studied the density of GluR1-immunoreactive puncta in the CA1 stratum radiatum and carried out assessments of social behaviors.ResultsIn Shank3 heterozygous mice, there was reduced amplitude of miniature excitatory postsynaptic currents from hippocampal CA1 pyramidal neurons and the input-output (I/O) relationship at Schaffer collateral-CA1 synapses in acute hippocampal slices was significantly depressed; both of these findings indicate a reduction in basal neurotransmission. Studies with specific inhibitors demonstrated that the decrease in basal transmission reflected reduced AMPA receptor-mediated transmission. This was further supported by the observation of reduced numbers of GluR1-immunoreactive puncta in the stratum radiatum. Long-term potentiation (LTP), induced either with θ-burst pairing (TBP) or high-frequency stimulation, was impaired in Shank3 heterozygous mice, with no significant change in long-term depression (LTD). In concordance with the LTP results, persistent expansion of spines was observed in control mice after TBP-induced LTP; however, only transient spine expansion was observed in Shank3 heterozygous mice. Male Shank3 heterozygotes displayed less social sniffing and emitted fewer ultrasonic vocalizations during interactions with estrus female mice, as compared to wild-type littermate controls.ConclusionsWe documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions in Shank3 heterozygous mice. Our results are consistent with altered synaptic development and function in Shank3 haploinsufficiency, highlighting the importance of Shank3 in synaptic function and supporting a link between deficits in synapse function and neurodevelopmental disorders. The reduced glutamatergic transmission that we observed in the Shank3 heterozygous mice represents an interesting therapeutic target in Shank3-haploinsufficiency syndromes.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately

Xiao-bin Wang; Ozlem Bozdagi; Jessica S. Nikitczuk; Zu Wei Zhai; Qiang Zhou; George W. Huntley

Persistent dendritic spine enlargement is associated with stable long-term potentiation (LTP), and the latter is thought to underlie long-lasting memories. Extracellular proteolytic remodeling of the synaptic microenvironment could be important for such plasticity, but whether or how proteolytic remodeling contributes to persistent modifications in synapse structure and function is unknown. Matrix metalloproteinase-9 (MMP-9) is an extracellular protease that is activated perisynaptically after LTP induction and required for LTP maintenance. Here, by monitoring spine size and excitatory postsynaptic potentials (EPSPs) simultaneously with combined 2-photon time-lapse imaging and whole-cell recordings from hippocampal neurons, we find that MMP-9 is both necessary and sufficient to drive spine enlargement and synaptic potentiation concomitantly. Both structural and functional MMP-driven forms of plasticity are mediated through β1-containing integrin receptors, are associated with integrin-dependent cofilin inactivation within spines, and require actin polymerization. In contrast, postsynaptic exocytosis and protein synthesis are both required for MMP-9-induced potentiation, but not for initial MMP-9-induced spine expansion. However, spine expansion becomes unstable when postsynaptic exocytosis or protein synthesis is blocked, indicating that the 2 forms of plasticity are expressed independently but require interactions between them for persistence. When MMP activity is eliminated during theta-stimulation-induced LTP, both spine enlargement and synaptic potentiation are transient. Thus, MMP-mediated extracellular remodeling during LTP has an instructive role in establishing persistent modifications in both synapse structure and function of the kind critical for learning and memory.


The Journal of Neuroscience | 2012

Reduced Excitatory Neurotransmission and Mild Autism-Relevant Phenotypes in Adolescent Shank3 Null Mutant Mice

Mu Yang; Ozlem Bozdagi; Maria Luisa Scattoni; Markus Wöhr; Florence I. Roullet; Adam M. Katz; Danielle N. Abrams; David Kalikhman; Harrison Simon; Leuk Woldeyohannes; James Y. Zhang; Mark J. Harris; Roheeni Saxena; Jill L. Silverman; Joseph D. Buxbaum; Jacqueline N. Crawley

Mutations in the synaptic scaffolding protein gene SHANK3 are strongly implicated in autism and Phelan–McDermid 22q13 deletion syndrome. The precise location of the mutation within the Shank3 gene is key to its phenotypic outcomes. Here, we report the physiological and behavioral consequences of null and heterozygous mutations in the ankyrin repeat domain in Shank3 mice. Both homozygous and heterozygous mice showed reduced glutamatergic transmission and long-term potentiation in the hippocampus with more severe deficits detected in the homozygous mice. Three independent cohorts were evaluated for magnitude and replicability of behavioral endophenotypes relevant to autism and Phelan–McDermid syndrome. Mild social impairments were detected, primarily in juveniles during reciprocal interactions, while all genotypes displayed normal adult sociability on the three-chambered task. Impaired novel object recognition and rotarod performance were consistent across cohorts of null mutants. Repetitive self-grooming, reduced ultrasonic vocalizations, and deficits in reversal of water maze learning were detected only in some cohorts, emphasizing the importance of replication analyses. These results demonstrate the exquisite specificity of deletions in discrete domains within the Shank3 gene in determining severity of symptoms.


Molecular and Cellular Neuroscience | 2004

Temporally Distinct Demands for Classic Cadherins in Synapse Formation and Maturation

Ozlem Bozdagi; Martin Valcin; Kira E. Poskanzer; Hidekazu Tanaka; Deanna L. Benson

Classic cadherins are synaptic adhesion proteins that have been implicated in synapse formation and targeting. Brief inactivation of classic cadherin function in young neurons appears to abrogate synapse formation when examined acutely. It remains unknown if such abrogation is unique to young neurons, whether it occurs by stalling neuronal maturation or by directly interfering with the process of synapse assembly, or whether synapse targeting is altered. Here we asked if sustained pan-cadherin blockade would prevent or alter the progression of axonal and dendritic outgrowth, synaptogenesis, or the stereotypic distribution of excitatory and inhibitory synapses on cultured hippocampal neurons. While pre- and postsynaptic cadherins are required for synapse assembly in young neurons, we find that in neurons older than 10 days, classic cadherins are entirely dispensable for joining and aligning presynaptic vesicle clusters with molecular markers of the postsynaptic density. Furthermore, we find that the proportion and relative distributions of excitatory and inhibitory terminals on single neurons are not altered. However, synapses that form on neurons in which cadherin function is blocked are smaller; they exhibit decreased synaptic vesicle recycling and a decreased frequency of spontaneous EPSCs. Moreover, they fail to acquire resistance to F-actin depolymerization, a hallmark of mature, stable contacts. These data provide new evidence that cadherins are required to promote synapse stabilization and structural and functional maturation, but dispensable for the correct subcellular distribution of excitatory and inhibitory synapses.


Molecular Autism | 2013

Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay

Ozlem Bozdagi; Teresa Tavassoli; Joseph D. Buxbaum

BackgroundHaploinsufficiency of SHANK3, due to either hemizygous gene deletion (termed 22q13 deletion syndrome or Phelan-McDermid syndrome) or to gene mutation, accounts for about 0.5% of the cases of autism spectrum disorder (ASD) and/or developmental delay, and there is evidence for a wider role for SHANK3 and glutamate signaling abnormalities in ASD and related conditions. Therapeutic approaches that reverse deficits in SHANK3-haploinsufficiency may therefore be broadly beneficial in ASD and in developmental delay.FindingsWe observed that daily intraperitoneal injections of human insulin-like growth factor 1 (IGF-1) over a 2-week period reversed deficits in hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) signaling, long-term potentiation (LTP), and motor performance that we had previously reported in Shank3-deficient mice. Positive effects were observed with an IGF-1 peptide derivative as well.ConclusionsWe observed significant beneficial effects of IGF-1 in a mouse model of ASD and of developmental delay. Studies in mouse and human neuronal models of Rett syndrome also show benefits with IGF-1, raising the possibility that this compound may have benefits broadly in ASD and related conditions, even with differing molecular etiology. Given the extensive safety data for IGF-1 in children with short stature due to primary IGF-1 deficiency, IGF-1 is an attractive candidate for controlled clinical trials in SHANK3-deficiency and in ASD.


The Journal of Neuroscience | 2010

Persistence of Coordinated Long-Term Potentiation and Dendritic Spine Enlargement at Mature Hippocampal CA1 Synapses Requires N-Cadherin

Ozlem Bozdagi; Xiao-bin Wang; Jessica S. Nikitczuk; Tonya R. Anderson; Erik B. Bloss; Glenn L. Radice; Qiang Zhou; Deanna L. Benson; George W. Huntley

Persistent changes in spine shape are coupled to long-lasting synaptic plasticity in hippocampus. The molecules that coordinate such persistent structural and functional plasticity are unknown. Here, we generated mice in which the cell adhesion molecule N-cadherin was conditionally ablated from postnatal, excitatory synapses in hippocampus. We applied to adult mice of either sex a combination of whole-cell recording, two-photon microscopy, and spine morphometric analysis to show that postnatal ablation of N-cadherin has profound effects on the stability of coordinated spine enlargement and long-term potentiation (LTP) at mature CA1 synapses, with no effects on baseline spine density or morphology, baseline properties of synaptic neurotransmission, or long-term depression. Thus, N-cadherin couples persistent spine structural modifications with long-lasting synaptic functional modifications associated selectively with LTP, revealing unexpectedly distinct roles at mature synapses in comparison with earlier, broader functions in synapse and spine development.

Collaboration


Dive into the Ozlem Bozdagi's collaboration.

Top Co-Authors

Avatar

George W. Huntley

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Joseph D. Buxbaum

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Deanna L. Benson

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory A. Elder

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Xiao-bin Wang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Masato Sadahiro

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Qiang Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar

Stephen R. Salton

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Takeshi Sakurai

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge