Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. A. Bland is active.

Publication


Featured researches published by P. A. Bland.


Science | 2006

Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples

Michael E. Zolensky; Thomas J. Zega; Hajime Yano; Sue Wirick; Andrew J. Westphal; M. K. Weisberg; I. Weber; Jack L. Warren; Michael A. Velbel; Akira Tsuchiyama; Peter Tsou; A. Toppani; Naotaka Tomioka; Kazushige Tomeoka; Nick E. Teslich; Mitra L. Taheri; Jean Susini; Rhonda M. Stroud; Thomas G. Stephan; Frank J. Stadermann; Christopher J. Snead; Steven B. Simon; A. Simionovici; Thomas H. See; François Robert; Frans J. M. Rietmeijer; William Rao; Murielle C. Perronnet; D. A. Papanastassiou; Kyoko Okudaira

The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Early Solar System hydrothermal activity in chondritic asteroids on 1–10-year timescales

Kathryn A. Dyl; A. Bischoff; Karen Ziegler; Edward D. Young; Karl Wimmer; P. A. Bland

Chondritic meteorites are considered the most primitive remnants of planetesimals from the early Solar System. As undifferentiated objects, they also display widespread evidence of water–rock interaction on the parent body. Understanding this history has implications for the formation of planetary bodies, the delivery of water to the inner Solar System, and the formation of prebiotic molecules. The timescales of water–rock reactions in these early objects, however, are largely unknown. Here, we report evidence for short-lived water–rock reactions in the highly metamorphosed ordinary chondrite breccia Villalbeto de la Peña (L6). An exotic clast (d = 2cm) has coexisting variations in feldspar composition and oxygen isotope ratios that can only result from hydrothermal conditions. The profiles were modeled at T = 800 °C and P(H2O) = 1 bar using modified grain-boundary diffusion parameters for oxygen self-diffusion and reaction rates of NaSiCa-1Al-1 exchange in a fumarole. The geochemical data are consistent with hydrothermal activity on the parent body lasting only 1–10 y. This result has wide-ranging implications for the geological history of chondritic asteroids.


Australian Journal of Earth Sciences | 2012

The Australian Desert Fireball Network: a new era for planetary science

P. A. Bland; Pavel Spurný; A. W. R. Bevan; K.T. Howard; Martin C. Towner; G. K. Benedix; R. C. Greenwood; Lukáš Shrbený; Ian A. Franchi; G. Deacon; Jiri Borovicka; Zdeněk Ceplecha; David G. Vaughan; Robert M. Hough

Through an international collaboration between Imperial College London, the Ondřejov Observatory in the Czech Republic and the Western Australian Museum, the installation of the Australian Desert Fireball Network in the Nullarbor Region of Western Australia was completed in 2007. Currently, the Network, which is the first to be established in the southern hemisphere, comprises four all-sky autonomous observatories providing precise triangulation of fireball records to constrain pre-atmospheric orbits and fall positions of meteorites over an area of approximately 200 000 km2. To date, the Network has led to the successful recovery of two observed meteorite falls. The first recovery was three fragments (174, 150 and 14.9 g) of the same meteorite fall recorded on 20 July 2007 at 19 h 13 m 53.2 s±0.1 s UT that were found within 100 m of the predicted fall line. Named Bunburra Rockhole, the meteorite is a basaltic achondrite with an oxygen isotopic composition (Δ17O = −0.112 ‰) distinguishing it from basaltic meteorites belonging to the Howardite–Eucrite–Diogenite clan thought to be derived from asteroid 4Vesta, and therefore must have come from another differentiated asteroid in the terrestrial planet region. Bunburra Rockhole was delivered to Earth from an Aten-like orbit that was almost entirely contained within the Earths orbit. The second recovered fall was detected by the Network on 13 April 2010 and led to the recovery of a 24.54 g meteorite fragment that is yet to be fully described. To date, the Network has recorded ∼550 fireballs. Records from which precise orbits and trajectories can be determined number ∼150. In addition to the two recovered falls twelve fireballs are considered to have resulted in meteorite falls. Of these, four are probable falls (10s–100 g), and five are certain falls (>100 g). Having proved the potential of the Network, ultimately a large dataset of meteorites with orbits will provide the spatial context for the interpretation of meteorite composition that is currently lacking in planetary science.


Journal of Geophysical Research | 2015

The Pb isotopic evolution of the Martian mantle constrained by initial Pb in Martian meteorites

Jeremy J. Bellucci; Alexander A. Nemchin; M.J. Whitehouse; Joshua F. Snape; P. A. Bland; G. K. Benedix

The Pb isotopic compositions of maskelynite and pyroxene grains were measured in ALH84001 and three enriched shergottites (Zagami, Roberts Massif 04262, and Larkman Nunatuk 12011) by secondary ion mass spectrometry. A maskelynite-pyroxene isochron for ALH84001 defines a crystallization age of 4089 ± 73 Ma (2σ). The initial Pb isotopic composition of each meteorite was measured in multiple maskelynite grains. ALH84001 has the least radiogenic initial Pb isotopic composition of any Martian meteorite measured to date (i.e., 206Pb/204Pb = 10.07 ± 0.17, 2σ). Assuming an age of reservoir formation for ALH84001 and the enriched shergottites of 4513 Ma, a two-stage Pb isotopic model has been constructed. This model links ALH84001 and the enriched shergottites by their similar μ value (238U/204Pb) of 4.1–4.6 from 4.51 Ga to 4.1 Ga and 0.17 Ga, respectively. The model employed here is dependent on a chondritic μ value (~1.2) from 4567 to 4513 Ma, which implies that core segregation had little to no effect on the μ value(s) of the Martian mantle. The proposed Pb isotopic model here can be used to calculate ages that are in agreement with Rb-Sr, Lu-Hf, and Sm-Nd ages previously determined in the meteorites and confirm the young (~170 Ma) ages of the enriched shergottites and ancient, >4 Ga, age of ALH84001.


Nature Geoscience | 2013

Biomass preservation in impact melt ejecta

K. T. Howard; Melanie J. Bailey; Deborah Berhanu; P. A. Bland; Gordon Cressey; Lauren E. Howard; C. Jeynes; Richard Matthewman; Zita Martins; Mark A. Sephton; Vlad Stolojan; Sasha Verchovsky

Meteorites can have played a role in the delivery of the building blocks of life to Earth only if organic compounds are able to survive the high pressures and temperatures of an impact event. Although experimental impact studies have reported the survival of organic compounds, there are uncertainties in scaling experimental conditions to those of a meteorite impact on Earth and organic matter has not been found in highly shocked impact materials in a natural setting. Impact glass linked to the 1.2-km-diameter Darwin crater in western Tasmania is strewn over an area exceeding 400 km2 and is thought to have been ejected by a meteorite impact about 800 kyr ago into terrain consisting of rainforest and swamp. Here we use pyrolysis–gas chromatography–mass spectrometry to show that biomarkers representative of plant species in the local ecosystem—including cellulose, lignin, aliphatic biopolymer and protein remnants—survived the Darwin impact. We find that inside the impact glass the organic components are trapped in porous carbon spheres. We propose that the organic material was captured within impact melt and preserved when the melt quenched to glass, preventing organic decomposition since the impact. We suggest that organic material can survive capture and transport in products of extreme impact processing, at least for a Darwin-sized impact event.


Geology | 2017

Defining the mechanism for compaction of the CV chondrite parent body

L.V. Forman; P. A. Bland; Nicholas E. Timms; L. Daly; G. K. Benedix; Patrick Trimby; Gareth S. Collins; Thomas M Davison

The Allende meteorite, a relatively unaltered member of the CV carbonaceous chondrite group, contains primitive crystallographic textures that can inform our understanding of early Solar System planetary compaction. To test between models of porosity reduction on the CV parent body, complex microstructures within ~0.5-mm-diameter chondrules and ~10-μm-long matrix olivine grains were analyzed by electron backscatter diffraction (EBSD) techniques. The large area map presented is one of the most extensive EBSD maps to have been collected in application to extraterrestrial materials. Chondrule margins preferentially exhibit limited intragrain crystallographic misorientation due to localized crystal-plastic deformation. Crystallographic preferred orientations (CPOs) preserved by matrix olivine grains are strongly coupled to grain shape, most pronounced in shortest dimension , yet are locally variable in orientation and strength. Lithostatic pressure within plausible chondritic model asteroids is not sufficient to drive compaction or create the observed microstructures if the aggregate was cold. Significant local variability in the orientation and intensity of compaction is also inconsistent with a global process. Detailed microstructures indicative of crystal-plastic deformation are consistent with brief heating events that were small in magnitude. When combined with a lack of sintered grains and the spatially heterogeneous CPO, ubiquitous hot isostatic pressing is unlikely to be responsible. Furthermore, Allende is the most metamorphosed CV chondrite, so if sintering occurred at all on the CV parent body it would be evident here. We conclude that the crystallographic textures observed reflect impact compaction and indicate shock-wave directionality. We therefore present some of the first significant evidence for shock compaction of the CV parent body.


international conference on image processing | 2014

Automated crater detection and counting using the hough transform

Monty J. Galloway; G. K. Benedix; P. A. Bland; Jonathan Paxman; Martin C. Towner; Tele Tan

A manual process for detecting and counting craters on the surface of a planetary body becomes impractical when attempting to survey a large surface area. Similarly, existing automated methods that are effective for specific areas of focus are also impractical for a large data set. We report on the work completed so far in developing a crater detection system to automatically detect craters down to sub-km sizes, across a large portion of a planetary surface. Specifically, we assess the performance of a Hough Transform (HT) for the application and in particular the influence of its preprocessing edge detection phase. Tests are performed on high resolution images of the Martian surface, anticipating a large scale crater counting application for crater chronology on the surface of Mars.


Geology | 2017

Nebula sulfidation and evidence for migration of “free-floating” refractory metal nuggets revealed by atom probe microscopy

L. Daly; P. A. Bland; David W. Saxey; Steven M. Reddy; Denis Fougerouse; William D.A. Rickard; L.V. Forman

Disk models have been proposed that imply particles migrate rapidly in a protoplanetary disk. However, the only physical constraints on these processes from meteorites are observations of refractory inclusions in cometary material from the NASA Stardust mission. Atom probe microscopy (APM) of sub-micrometer refractory metal nuggets (RMNs) contained within a Sc-Zr–rich ultrarefractory inclusion (URI) from the ALH 77307 carbonaceous Ornans (CO) 3.0 meteorite revealed the presence of sulfur at 0.06–1.00 atomic percent (at%) abundances within RMNs. The mineralogical assemblage, petrographic texture, and flat chondrite-normalized highly siderophile element ratios indicate S exposure was unlikely to have occurred after the RMNs were incorporated into the URI. APM analyses suggest these RMNs were likely “free floating” when they were exposed to a S-condensing gas. This requires early, rapid migration of RMNs to cooler regions of the disk to incorporate S and then cycling back to the Ca-Al–rich inclusion (CAI)–forming region for incorporation in the URI, or conditions in the CAI-forming region that promote the incorporation of S into RMNs.


ursi general assembly and scientific symposium | 2014

Characterising fireballs for mass determination: Steps toward automating the Australian desert fireball network

Eleanor K. Sansom; P. A. Bland; Jonathan Paxman; Martin C. Towner

Determining the mass of a meteoroid passing through the Earths atmoshphere is essential to determining potential meteorite fall positions. This is only possible if the characteristics of these meteoroids, such as density and shape are in some way constrained. When a meteoroid falls through the atmosphere, it produces a bright fireball. Dedicated camera networks have been established to record these events with the objectives of calculating orbits and recovering meteorites. The Desert Fireball Network (DFN) is one of these programs and will eventually cover ~2 million km2. Automated observatories take high-resolution optical images throughout the night with the aim of tracking and recovering meteorites. From these optical images, the position, mass and velocity of the meteoroid at the end of its visible trajectory is required to predict the path to the ground. The method proposed here is a new aproach which aims to automate the process of mass determination for application to any trajectory dataset, be it optical or radio. Two stages are involved, beginning with a dynamic optimisation of unknown meteoroid characteristics followed by an extended Kalman filter. This second stage estimates meteoroid states (including position, velocity and mass) by applying a prediction and update approach to the raw data and making use of uncertainty models. This method has been applied to the Bunburra Rockhole dataset, and the terminal bright flight mass was determined to be 0.412 ±0.256 kg, which is close to the recovered mass of 338.9 g [1]. The optimal entry mass using this proposed method is 24.36 kg, which is consistent with other work based on the estabished photometric method and with cosmic ray analysis. The new method incorporates the scatter of the raw data as well as any potential fragmentation events and can form the basis for a fully automated method for characterising mass and velocity.


Nature Geoscience | 2018

An impact melt origin for Earth’s oldest known evolved rocks

Tim E. Johnson; Nicholas J. Gardiner; Katarina Miljković; Christopher J. Spencer; Christopher L. Kirkland; P. A. Bland; Hugh Smithies

Earth’s oldest evolved (felsic) rocks, the 4.02-billion-year-old Idiwhaa gneisses of the Acasta Gneiss Complex, northwest Canada, have compositions that are distinct from the felsic rocks that typify Earth’s ancient continental nuclei, implying that they formed through a different process. Using phase equilibria and trace element modelling, we show that the Idiwhaa gneisses were produced by partial melting of iron-rich hydrated basaltic rocks (amphibolites) at very low pressures, equating to the uppermost ~3 km of a Hadean crust that was dominantly mafic in composition. The heat required for partial melting at such shallow levels is most easily explained through meteorite impacts. Hydrodynamic impact modelling shows not only that this scenario is physically plausible, but also that the region of shallow partial melting appropriate to formation of the Idiwhaa gneisses would have been widespread. Given the predicted high flux of meteorites in the late Hadean, impact melting may have been the predominant mechanism that generated Hadean felsic rocks.Earth’s oldest known felsic rocks formed by partial melting at low pressures and high temperatures caused by impact melting of mafic Hadean crust, according to phase equilibria and trace element modelling.

Collaboration


Dive into the P. A. Bland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Yang

University of Sydney

View shared research outputs
Researchain Logo
Decentralizing Knowledge