Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where P. A. Robinson is active.

Publication


Featured researches published by P. A. Robinson.


PLOS Computational Biology | 2008

The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields

Gustavo Deco; Viktor K. Jirsa; P. A. Robinson; Michael Breakspear; K. J. Friston

The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space–time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalogram (MEG). Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences.


NeuroImage | 2007

Comparing hemodynamic models with DCM

Klaas E. Stephan; Nikolaus Weiskopf; P.M. Drysdale; P. A. Robinson; K. J. Friston

The classical model of blood oxygen level-dependent (BOLD) responses by Buxton et al. [Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med. 39, 855–864] has been very important in providing a biophysically plausible framework for explaining different aspects of hemodynamic responses. It also plays an important role in the hemodynamic forward model for dynamic causal modeling (DCM) of fMRI data. A recent study by Obata et al. [Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong, E.C., Frank, L.R., Buxton, R.B., 2004. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the Balloon model to the interpretation of BOLD transients. NeuroImage 21, 144–153] linearized the BOLD signal equation and suggested a revised form for the model coefficients. In this paper, we show that the classical and revised models are special cases of a generalized model. The BOLD signal equation of this generalized model can be reduced to that of the classical Buxton model by simplifying the coefficients or can be linearized to give the Obata model. Given the importance of hemodynamic models for investigating BOLD responses and analyses of effective connectivity with DCM, the question arises which formulation is the best model for empirically measured BOLD responses. In this article, we address this question by embedding different variants of the BOLD signal equation in a well-established DCM of functional interactions among visual areas. This allows us to compare the ensuing models using Bayesian model selection. Our model comparison approach had a factorial structure, comparing eight different hemodynamic models based on (i) classical vs. revised forms for the coefficients, (ii) linear vs. non-linear output equations, and (iii) fixed vs. free parameters, ε, for region-specific ratios of intra- and extravascular signals. Using fMRI data from a group of twelve subjects, we demonstrate that the best model is a non-linear model with a revised form for the coefficients, in which ε is treated as a free parameter.


Biological Cybernetics | 2002

Unified neurophysical model of EEG spectra and evoked potentials

Christopher J. Rennie; P. A. Robinson; J. J. Wright

Abstract. Evoked potentials – the brains transient electrical responses to discrete stimuli – are modeled as impulse responses using a continuum model of brain electrical activity. Previous models of ongoing brain activity are refined by adding an improved model of thalamic connectivity and modulation, and by allowing for two populations of excitatory cortical neurons distinguished by their axonal ranges. Evoked potentials are shown to be modelable as an impulse response that is a sum of component responses. The component occurring about 100 ms poststimulus is attributed to sensory activation, and this, together with positive and negative feedback pathways between the cortex and thalamus, results in subsequent peaks and troughs that semiquantitatively reproduce those of observed evoked potentials. Modulation of the strengths of positive and negative feedback, in ways consistent with psychological theories of attentional focus, results in d istinct responses resembling those seen in experiments involving attentional changes. The modeled impulse responses reproduce key features of typical experimental evoked response potentials: timing, relative amplitude, and number of peaks. The same model, with further modulation of feedback, also reproduces experimental spectra. Together, these results mean that a broad range of ongoing and transient electrocortical activity can be understood within a common framework, which is parameterized by values that are directly related to physiological and anatomical quantities.


Human Brain Mapping | 2004

Estimation of multiscale neurophysiologic parameters by electroencephalographic means.

P. A. Robinson; Christopher J. Rennie; Donald L. Rowe; S.C. O'Connor

It is shown that new model‐based electroencephalographic (EEG) methods can quantify neurophysiologic parameters that underlie EEG generation in ways that are complementary to and consistent with standard physiologic techniques. This is done by isolating parameter ranges that give good matches between model predictions and a variety of experimental EEG‐related phenomena simultaneously. Resulting constraints range from the submicrometer synaptic level to length scales of tens of centimeters, and from timescales of around 1 ms to 1 s or more, and are found to be consistent with independent physiologic and anatomic measures. In the process, a new method of obtaining model parameters from the data is developed, including a Monte Carlo implementation for use when not all input data are available. Overall, the approaches used are complementary to other methods, constraining allowable parameter ranges in different ways and leading to much tighter constraints overall. EEG methods often provide the most restrictive individual constraints. This approach opens a new, noninvasive window on quantitative brain analysis, with the ability to monitor temporal changes, and the potential to map spatial variations. Unlike traditional phenomenologic quantitative EEG measures, the methods proposed here are based explicitly on physiology and anatomy. Hum. Brain Mapping 23:53–72, 2004.


The Journal of Neuroscience | 2011

Biophysical mechanisms of multistability in resting-state cortical rhythms

Frank Freyer; James A. Roberts; Robert Becker; P. A. Robinson; Petra Ritter; Michael Breakspear

The human alpha (8–12 Hz) rhythm is one of the most prominent, robust, and widely studied attributes of ongoing cortical activity. Contrary to the prevalent notion that it simply “waxes and wanes,” spontaneous alpha activity bursts erratically between two distinct modes of activity. We now establish a mechanism for this multistable phenomenon in resting-state cortical recordings by characterizing the complex dynamics of a biophysical model of macroscopic corticothalamic activity. This is achieved by studying the predicted activity of cortical and thalamic neuronal populations in this model as a function of its dynamic stability and the role of nonspecific synaptic noise. We hence find that fluctuating noisy inputs into thalamic neurons elicit spontaneous bursts between low- and high-amplitude alpha oscillations when the system is near a particular type of dynamical instability, namely a subcritical Hopf bifurcation. When the postsynaptic potentials associated with these noisy inputs are modulated by cortical feedback, the SD of power within each of these modes scale in proportion to their mean, showing remarkable concordance with empirical data. Our state-dependent corticothalamic model hence exhibits multistability and scale-invariant fluctuations—key features of resting-state cortical activity and indeed, of human perception, cognition, and behavior—thus providing a unified account of these apparently divergent phenomena.


Solar Physics | 1992

Clumpy Langmuir waves in type III radio sources

P. A. Robinson

A model is developed for the clumpy Langmuir waves observed in type III source regions. In this model the waves are generated by instability of a beam which propagates outward from the Sun in a state close to marginal stability. Ambient density perturbations cause fluctuations about the marginally stable state, leading to nonuniformities in both beam and waves and, hence, to spatially inhomogeneous growth. High damping rates and high wave levels are strongly anti-correlated, leading to suppression of the net damping. Below saturation stochastic growth causes the waves to follow a random walk in the logarithm of their energy density and the resulting probability of observing a field of magnitude E is approximately proportional to E-1. Comparison with observations shows that this model can account for the levels and clumpiness of the Langmuir waves, the small net dissipation required for the beams to propagate to 1 AU, the characteristic decay time of type III electromagnetic emission, and the negative mean growth rate observed in situ in type III sources. At 1 AU only the very highest fields approach the threshold for nonlinear wave collapse, but this threshold may be more commonly exceeded closer to the Sun.


The Journal of Neuroscience | 2009

Bistability and Non-Gaussian Fluctuations in Spontaneous Cortical Activity

Frank Freyer; Kevin M. Aquino; P. A. Robinson; Petra Ritter; Michael Breakspear

The brain is widely assumed to be a paradigmatic example of a complex, self-organizing system. As such, it should exhibit the classic hallmarks of nonlinearity, multistability, and “nondiffusivity” (large coherent fluctuations). Surprisingly, at least at the very large scale of neocortical dynamics, there is little empirical evidence to support this, and hence most computational and methodological frameworks for healthy brain activity have proceeded very reasonably from a purely linear and diffusive perspective. By studying the temporal fluctuations of power in human resting-state electroencephalograms, we show that, although these simple properties may hold true at some temporal scales, there is strong evidence for bistability and nondiffusivity in key brain rhythms. Bistability is manifest as nonclassic bursting between high- and low-amplitude modes in the alpha rhythm. Nondiffusivity is expressed through the irregular appearance of high amplitude “extremal” events in beta rhythm power fluctuations. The statistical robustness of these observations was confirmed through comparison with Gaussian-rendered phase-randomized surrogate data. Although there is a good conceptual framework for understanding bistability in cortical dynamics, the implications of the extremal events challenge existing frameworks for understanding large-scale brain systems.


Solar Physics | 1998

Fundamental and Harmonic Emission in Type III Solar Radio Bursts – I. Emission at a Single Location or Frequency

P. A. Robinson; Iver H. Cairns

A model of type III solar radio bursts is developed that incorporates large-angle scattering and reabsorption of fundamental emission amid ambient density fluctuations in the corona and solar wind. Comparison with observations shows that this model accounts semiquantitatively for anomalous harmonic ratios, the exponential decay constant of bursts, burst rise times, and the directivity of fundamental emission. It is concluded that the long emission tail on interplanetary type III bursts is mostly fundamental emission, while much of the anomalous time delay of fundamental relative to harmonic emission from a given location must be ascribed to other causes.


Journal of Geophysical Research | 2001

Theory of type II radio emission from the foreshock of an interplanetary shock

Stuart A. Knock; Iver H. Cairns; P. A. Robinson; Zdenka Kuncic

We present an analytical model for type II solar radio bursts and then apply it to an observed type II event. Electron beams are produced in the foreshock of an interplanetary shock via shock drift acceleration. Reflection is treated in the de Hoffman-Teller frame with efficiencies modeled by a losscone that incorporates the effects of the static cross-shock potential ϕ. Stochastic growth theory is used to treat electron beam driven Langmuir wave growth in the type II foreshock. Nonlinear wave-wave interactions are used as the mechanisms for converting Langmuir wave energy into freely propagating radio emission. The electron beams produced in the foreshock have a wide range of speeds and number densities. These electron beams are qualitatively consistent with observations in a type II foreshock as well as earlier theoretical predictions, and observations in Earths foreshock. Significant levels of Langmuir waves and ƒp and 2ƒp emission are predicted. In particular, the predicted volume emissivities are similar to those predicted for type III bursts. The simple model developed for the source environment of the type II event on August 26, 1998, produces fluxes in reasonable agreement with observation.


Journal of Neuroscience Methods | 2007

Transformation of arbitrary distributions to the normal distribution with application to EEG test–retest reliability

S.J. van Albada; P. A. Robinson

Many variables in the social, physical, and biosciences, including neuroscience, are non-normally distributed. To improve the statistical properties of such data, or to allow parametric testing, logarithmic or logit transformations are often used. Box-Cox transformations or ad hoc methods are sometimes used for parameters for which no transformation is known to approximate normality. However, these methods do not always give good agreement with the Gaussian. A transformation is discussed that maps probability distributions as closely as possible to the normal distribution, with exact agreement for continuous distributions. To illustrate, the transformation is applied to a theoretical distribution, and to quantitative electroencephalographic (qEEG) measures from repeat recordings of 32 subjects which are highly non-normal. Agreement with the Gaussian was better than using logarithmic, logit, or Box-Cox transformations. Since normal data have previously been shown to have better test-retest reliability than non-normal data under fairly general circumstances, the implications of our transformation for the test-retest reliability of parameters were investigated. Reliability was shown to improve with the transformation, where the improvement was comparable to that using Box-Cox. An advantage of the general transformation is that it does not require laborious optimization over a range of parameters or a case-specific choice of form.

Collaboration


Dive into the P. A. Robinson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Li

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindsay C. Botten

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge