P.A. Schött
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P.A. Schött.
European Journal of Neuroscience | 1997
Johan Sandin; Jeanette Georgieva; P.A. Schött; Sven Ove Ögren; Lars Terenius
The newly discovered peptide nociceptin/orphanin FQ has been found to increase reactivity to pain and to influence locomotor activity after intracerebroventricular administration. This study investigated the possible role of hippocampal nociceptin/orphanin FQ in spatial learning and in spontaneous locomotion. Male rats were trained in the Morris water task after microinjection of 10 nmol nociceptin/orphanin FQ or artificial cerebrospinal fluid (as control) into the CA3 region of the dorsal hippocampus. Nociceptin/orphanin FQ was found to severely impair spatial learning without interfering with swimming performance. Itrahippocampal injection of nociceptin/orphanin FQ markedly decreased exploratory locomotor activity including vertical movements (rearing). The data suggest that nociceptin/orphanin FQ is a potent modulator of synaptic plasticity within the hippocampus.
Neuroscience | 1996
S.O. Ögren; A Pramanik; P.A. Schött
The neuropeptide galanin coexists in the medial septum and diagonal band of Broca with a population of acetylcholine neurons which project mainly to the ventral hippocampus. The present studies investigated the role of ventral hippocampal galanin in spatial learning in the male rat using a spatial learning task. In addition, the effects of galanin on cholinergic function were monitored by in vivo microdialysis and high-performance liquid chromatography. Bilateral microinjections of galanin (3 nmol/ rat) via chronic cannulae placed into the ventral hippocampus (i.v.h.) produced a slight but significant impairment of acquisition of the spatial task, while the 1 nmol dose of galanin facilitated acquisition. The 6 nmol dose of galanin failed to affect performance. A trend for an impairment of long-term memory retention (examined seven days after the last training session) was observed after 3 nmol of galanin, while the 1 nmol dose facilitated retention performance. Scopolamine (0.1 mg/kg, s.c.) caused a marked impairment of acquisition. Galanin (3 nmol/rat) given i.v.h. failed to modify the acquisition impairment caused by scopolamine (0.1 mg/kg, s.c.). These results suggest that galanin given i.v.h. produces a biphasic dose-dependent effects on spatial learning. In freely moving rats, galanin (3 nmol/10 microliters) given into the lateral ventricle (i.c.v.) did not affect basal acetylcholine release. In contrast, perfusion (100 min) with galanin (0.1 or 0.3 nmol/1.25 microliters/min) through the ventral hippocampal probe resulted in a reduction of basal acetycholine release which was dose-dependent and reversible. Galanin given i.c.v. (3 nmol/10 microliters) or through the probe (0.3 nmol/1.25 microliters/min) attenuated the increase in acetylcholine release evoked by the muscarinic antagonist scopolamine (0.1 mg/kg, s.c.; 0.001 nmol/1.25 microliters/min through the probe). The galanin plus scopolamine combinations produced a 50% lower increase in the extracellular acetylcholine concentrations than scopolamine alone. This suggests that the mechanism(s) behind scopolamine- and galanin-induced stimulation of acetylcholine differ. These results indicate that ventral hippocampal galanin plays a role in cognition and that it has a powerful and modulatory effect on cholinergic transmission. However, the effects of exogenous galanin on spatial learning cannot be directly related to changes in in vivo cholinergic transmission in the ventral hippocampus. These discrepancies may relate to effects on subtypes of galanin receptors with different functional coupling. In addition, other hippocampal neurotransmitter systems (e.g. noradrenergic neurons) important for cognitive functions may also be modulated by ventral hippocampal galanin.
Neuropsychopharmacology | 2003
Maria Åhlander-Lüttgen; Nather Madjid; P.A. Schött; Johan Sandin; Sven Ove Ögren
The present study examined the role of the 5-HT1B receptor in learning and memory. The ability of the 5-HT1B receptor agonist anpirtoline and the selective 5-HT1B receptor antagonist NAS-181 to affect spatial learning in the water maze (WM) and aversive learning in the passive avoidance (PA) task were examined in the rat. Anpirtoline (0.1–1.0 mg/kg, s.c.) caused a dose-dependent impairment of learning and memory in both the WM and PA tasks. NAS-181 (1.0–10 mg/kg, s.c.) failed to alter performance of the WM task, but produced a dose-dependent (0.1–20 mg/kg) facilitation of PA retention. Furthermore, treatment with NAS-181 (10 mg/kg) fully blocked the impairment of the WM and PA performance caused by anpirtoline (1.0 mg/kg). In contrast, NAS-181 (3.0–10 mg/kg) did not attenuate the spatial learning deficit and the impairment of PA retention caused by scopolamine (0.1 mg/kg in WM task, 0.3 mg/kg in PA task, s.c.), a nonselective muscarinic antagonist. Moreover, a subthreshold dose of scopolamine (0.1 mg/kg) blocked the facilitation of PA retention induced by NAS-181 (1.0–10 mg/kg). In addition, the behavioral disturbances (eg thigmotaxic swimming and platform deflections) induced by anpirtoline and scopolamine were analyzed in the WM task and correlated with WM performance. These results indicate that: (1) 5-HT1B receptor stimulation and blockade result in opposite effects in two types of cognitive tasks in the rat, and that (2) the 5-HT1B antagonist NAS-181 can facilitate some aspects of cognitive function, most likely via an increase of cholinergic transmission. These results suggest that 5-HT1B receptor antagonists may have a potential in the treatment of cognitive deficits resulting from loss of cholinergic transmission.
Neuroscience | 2004
E Elvander; P.A. Schött; Johan Sandin; Börje Bjelke; Jan Kehr; Takashi Yoshitake; S.O. Ögren
The cholinergic neurons in the septohippocampal projection are implicated in hippocampal functions such as spatial learning and memory. The aim of this study was to examine how septohippocampal cholinergic transmission is modulated by muscarinic inputs and by the neuropeptide galanin, co-localized with acetylcholine (ACh) in septohippocampal cholinergic neurons, and how spatial learning assessed by the Morris water maze test is affected. Muscarinic inputs to the septal area are assumed to be excitatory, whereas galanin is hypothesized to inhibit septohippocampal cholinergic function. To test these hypotheses, compounds were microinjected into the medial septum and hippocampal ACh release was assessed by microdialysis probes in the ventral hippocampus of the rat. Blockade of septal muscarinic transmission by intraseptal scopolamine increased hippocampal ACh release suggesting that septal cholinergic neurons are under tonic inhibition. Stimulation of septal muscarinic receptors by carbachol also increased hippocampal ACh release. Despite this increase, both scopolamine and carbachol tended to impair hippocampus-dependent spatial learning. This finding also suggests a revision of the simplistic notion that an increase in hippocampal ACh may be facilitatory for learning and memory. Galanin infused into the medial septum enhanced hippocampal ACh release and facilitated spatial learning, suggesting that septal galanin, contrary to earlier claims, does not inhibit but excites septohippocampal cholinergic neurons. Galanin receptor stimulation combined with muscarinic blockade in the septal area resulted in an excessive increase of hippocampal ACh release combined with an impairment of spatial learning. This finding suggests that the level of muscarinic activity within the septal area may determine the effects of galanin on hippocampal cognitive functions. In summary, a limited range of cholinergic muscarinic transmission may contribute to optimal hippocampal function, a finding that has important implications for therapeutic approaches in the treatment of disorders of memory function.
Neuropsychopharmacology | 1999
Maria Åhlander; Ilga Misane; P.A. Schött; Sven Ove Ögren
This study analyzes whether the disruptive effects of the noncompetitive NMDA receptor antagonist MK-801 (0.01– 0.1 mg/kg SC) on spatial learning can be dissociated from sensorimotor disturbances in the rat. Two different modifications of the Morris swim maze task with a hidden underwater platform were used: with or without local cue. Retention was tested either 24 h or 7 days after training as a probe trial (without platform). The present data indicate that MK-801 produces an impairment of spatial learning that cannot be dissociated from motor or sensory mechanisms. These findings support the view that NMDA receptors probably contribute to, but are not essential for, spatial learning in the water maze.
Neuroscience | 1998
Johan Sandin; Ingrid Nylander; Jeanette Georgieva; P.A. Schött; S.O. Ögren; Lars Terenius
The hippocampus plays a central role in the acquisition and storage of information. Long-term potentiation in the mossy fibre pathway to the CA3 region in the hippocampus, an animal model of memory acquisition, is modulated by dynorphin peptides. This study investigated the possible role of hippocampal dynorphin in spatial learning. Male rats were trained in the Morris Water Task after microinjection with different doses of dynorphin B (1, 3.3 or 10 nmol/rat) or artificial cerebrospinal fluid (as control) into the CA3 region of the dorsal hippocampus. Dynorphin B was found to impair spatial learning at all tested doses. The synthetic kappa1-selective opiate receptor antagonist nor-binaltorphimine (2 nmol) also given into the hippocampus fully blocked the acquisition impairment caused by dynorphin B (10 nmol), while nor-binaltorphimine alone did not affect learning performance. These findings suggest that dynorphin peptides could play a modulatory role in hippocampal plasticity by acting on hippocampal kappa-receptors and thereby impair spatial learning.
Annals of the New York Academy of Sciences | 1998
S.O. Ögren; P.A. Schött; Jan Kehr; T. Yoshitake; Ilga Misane; P. Mannström; J. Sandin
Abstract: This paper presents evidence that galanin is a potent in vivo modulator of basal acetylcholine release in the rat brain with qualitatively and quantitatively differential effects in the dorsal and ventral hippocampus. Galanin perfused through the microdialysis probe decreased basal acetylcholine release in the ventral hippocampus, while it enhanced acetylcholine release in the dorsal hippocampus. Galanin (3 nmol/rat) infused into the ventral hippocampus impaired spatial learning acquisition, while it tended to facilitate acquisition when injected into the dorsal hippocampus. These effects appear to be related to activation of GAL‐R1 (ventral hippocampus) and GAL‐R2 (dorsal hippocampus) receptors, respectively. However, the effects of galanin on acetylcholine release and on spatial learning appear not to be directly related to cholinergic mechanisms, but they may also involve interactions with noradrenaline and/or glutamate transmission. Galanin administered into the lateral ventricle failed to affect acetylcholine release, while this route of administration produced a long‐lasting reduction in 5‐HT release in the ventral hippocampus, indicating that galanin is a potent inhibitor of mesencephalic 5‐HT neurotransmission in vivo. Subsequent studies supported this hypothesis, showing that the effects on 5‐HT release in vivo are most likely mediated by a galanin receptor in the dorsal raphe. The implications of these findings are discussed in relation to the role of acetylcholine in cognitive functions in the forebrain and the role of the raphe 5‐HT neurons in affective disorders.
Neuroscience | 1998
P.A. Schött; Börje Bjelke; S.O. Ögren
A recent study has shown that ventral hippocampal galanin plays a role in spatial learning and that it has an inhibitory effect on basal acetylcholine release [Ogren S. O. et al. (1996) Neuroscience 75, 1127-1140]. The present studies were designed to compare the in vivo tissue distribution and kinetics of infused galanin (porcine) with the temporal effect of galanin on spatial learning in the rat. Daily bilateral microinfusions of galanin (1.5 nmol/side for five days) via chronic cannulae placed in the ventral hippocampus produced a significant impairment of acquisition of the spatial task when infused 20 min, but not 5 or 60 min, before the daily training session. No overall impairment of memory retention (examined 24 h after the last training session) was observed in the galanin-treated rats. These results indicate that galanin given in the ventral hippocampus produces a time-dependent effect on acquisition. Using an antibody to porcine galanin and immunohistochemistry, galanin infused in the ventral hippocampus was found to be distributed mainly within the ventral part of the hippocampus and around the infusion site. The infused galanin was rapidly cleared from the extracellular space between 5 and 20 min after infusion. Five minutes after infusion of galanin, a number of cells in the ventral hippocampus, both within and outside the zone of extracellularly located galanin, showed a positive galanin-like immunoreactivity. These cells appear morphologically to be medium-sized neurons with a similar position as cells showing neuropeptide Y-like immunoreactivity. At 20 and 60 min after infusion of galanin, no cells with detectable levels of galanin-like immunoreactivity could be seen. These results indicate that the temporal kinetics and distribution of infused galanin are of major importance for its behavioural effect in the ventral hippocampus. The rapid clearance of the infused galanin and its internalization by neuronal endocytotic mechanisms may be important for its effect on cognition.
Neuropharmacology | 2000
P.A. Schött; Tomas Hökfelt; Sven Ove Ögren
Anatomical, neurochemical and behavioural evidence support a role for galanin in hippocampally mediated functions such as spatial learning and memory. To obtain more precise information on this role, galanin (3 nmol/rat) was infused via bilateral chronic cannulae into different areas of the hippocampal formation which are characterized by different galanin receptor subtypes and also by different galanin innervation patterns. The effects of infused galanin on spatial learning were examined in the Morris swim maze. Infusions of galanin into both the dorsal and ventral dentate gyrus, which mainly contain GAL-R2 receptor mRNA and a high degree of galanin-noradrenaline coexistence, significantly retarded spatial acquisition without affecting swim speed or performance in the visible platform test. This spatial learning deficit was fully blocked by pretreatment with the non-selective galanin antagonist M35. Analysis of retention performance suggested that the major effect of intrahippocampal galanin is mediated via a specific disruption of acquisition mechanisms of importance for performance in the probe trial. Galanin infused into the ventral CA1 (a mainly GAL-R1 receptor mRNA expressing region) or into anterior, ventral CA3 regions did not produce any deficits in spatial learning compared to control animals. These results suggest that galanin mediates its action on spatial learning mainly through the GAL-R2 receptor subtype in areas where most of the galanin is present in noradrenergic terminals. A possible role for the GAL-R1 receptor subtype in cognition in the dorsal and ventral hippocampus remains to be defined. The results suggest a differential functional role for galanin and galanin receptor subtypes within subregions of the hippocampal formation.
Brain Research | 1999
Sven Ove Ögren; P.A. Schött; Jan Kehr; Ilga Misane; Haleh Razani
A number of studies indicate that galanin (GAL) is a potent modulator of basal acetylcholine release in the rat forebrain e.g. in the cholinergic neurons of the septo-hippocampal projections. Thus, GAL perfused through the microdialysis probe decreased basal acetylcholine release in the ventral hippocampus, while it enhanced acetylcholine release in the dorsal hippocampus. This finding indicates that GAL may act via different mechanisms within the subsystems of the hippocampus. This hypothesis has received support from studies using the Morris swim maze, a learning task dependent on hippocampal mechanisms. GAL (3 nmol/rat) infused into the ventral hippocampus impaired spatial learning acquisition, while it tended to facilitate when injected into the dorsal hippocampus. However, the effects of GAL on acetylcholine release and on spatial learning, which are due to activation of GAL-receptors, appear to be indirectly mediated possibly via noradrenaline transmission. GAL is also a potent inhibitor of mesencephalic 5-HT neurotransmission in vivo. These findings are discussed in relation to the role of acetylcholine and serotonin in cognition.